
INTERRUPTS

Take a moment to pretend that it’s your turn to fix dinner for your

family of nine people. You need to start dinner at 3, and have it ready

by 5. So you decide to fix a tasty gourmet dinner that needs to be stirred

every ten minutes.

Now, are you going to just stare at the food, stir it after 10 minutes,

stare at it again, stir it, stare at it? Probably not. You may grab a book,

type some emails, play some Xbox, or do something else while the 10

minute timer on your stove is running.

When the timer rings, are you going to finish what you were doing

before stirring the dinner? Even if you had one hour before you finished

playing an Xbox game? Chances are the food would burn to a crisp if

you waited to stir it. Nope, you would interrupt whatever you were

doing to stir the food, and then you would return to your relaxing until

ten more minutes passed.

Sometimes, when you design a calculator program, you have

something that needs to happen on a consistent, timely basis, no matter

where in the program you are. In Axe, this is different from using

subroutines with sub(Lbl). A subroutine will only run when the axe

program asks it to run. Thus, a subroutine will only run as many times

and as fast as it is called by sub(). But an interrupt routine will run after

a certain amount of time has passed, so no matter what happens in your

program, your interrupt routine will run the same number of times every

minute.

Now that you’re excited about using interrupts, let’s put them into

practice. Remember that when you use interrupts, you cannot use L2 for

data storage.

Hopefully you remember the fun pong game that you created as an

example Axe program. At the end of the game you saw how many times

you hit the ball. We are going to edit this game so that you can also see

how many seconds you survived.

Below is the source code for your new PONG game. Anything

highlighted in blue is new, and will be commented on.

.PONG WITH INTERRUPTS
"PONG"→Str1
"SCORE:" →Str2
"SURVIVED:" →Str3 ; We want the game to display how many seconds long we
 ; survived, so Str3 will hold the word “SURVIVED” to display
 ; at the score screen.

[000000000000FFFF] →Pic1
[0000182C3C180000] →Pic2
DiagnosticOff
ClrHome
Output(6,3,Str1)
Pause 1000
0→S-1→D

0→T
 ; T, the amount of time, needs to start at Zero.
44→Z*256→X
10→Y
sub(HT)

FnInt(TI,6) ; Our interrupt routine is coded at Label TI. Turn on the
 ; interrupt routine at the slowest speed.
Repeat getKey(15)
If getKey(2) and (Z≠0)
Z-2→Z
End
If getKey(3) and (Z≠88)
Z+2→Z
End
X+V→X
Y+D→Y
If Y>70
Goto D
End
If Y=0
sub(HT)
End
If Y=54 and (abs(X/256-Z)<8)
sub(HT)
S+1→S
End
If X/256=0 or (X/256=88)
-V→V+X→X
End
ClrDraw

Pt-On(Z,54,Pic1)
Pt-On(X/256,Y,Pic2)
DispGraph
End
Lbl D
ClrHome
Disp Str2,S→Dec,i

Disp Str3,(T/118) →Dec,i ; Our interrupt routine ran at 118 times a second, and each
 ; time it ran, T was increased by 1. Divide by 118 to get
 ; the number of times each second the routine ran.
 ; IF YOU ARE USING A TI-83+ SE OR A TI-84+, change
 ; the value 118 to 108.

 ; Be aware that if you happen to survive for more than nine
 ; minutes, the number of seconds you survived will be
 ; inaccurate, because T went over 65535 and had to reset
 ; itself to 0.

LnReg ; Return interrupts to normal.
Return
Lbl HT
rand^512-256→V
-D→D
Return ; Before, this line was not needed because the line before it
 ; was the end of the program.

Lbl TI ; Our interrupt routine increases T by 1.
T+1→T

FUN FACTS

• Depending on what speed you choose, here’s how many
times your interrupt routine will run per second:

Speed Standard TI-83+ TI-83+ SE or TI-84+

0 560 Times a Second 512 Times a Second
2 248 Times a Second 228 Times a Second
4 170 Times a Second 146 Times a Second
6 118 Times a Second 108 Times a Second

• Why is L2 needed for interrupts? Well, the way the
processor works, 257 bytes of RAM are needed to tell the
processor where your interrupt routine is. Furthermore,
there’s only 256 possible locations that this table can start at,
and one of those locations is inside of L2. So L2 is big
enough—and in the right place—to handle interrupts
correctly.

• Axe uses IM 2 (called interrupt mode 2) for interrupts. There
actually was a way that one could run interrupts without L2,
by using interrupt mode 1, IM 1. However, TI called dibs on
IM 1.

• Can you have more than 1 interrupt routine? It’s possible,
but whether it is supported by Axe or not, it’s not an easy
feat. (Actually, it would be easier for ASM programmers
than for Axe programmers) Whatever the case, having more
than one interrupt routine means each routine is called at
random.

• IM 1 is necessary for your calculator to perform normally
when your game is finished. LnReg returns from IM 2 to IM
1, which is why you must use the command before your
program exits.

• Many calculator games use interrupts to produce sound and
music. In this way, no matter if the game speeds up or
slows down, music and sound will always play at a
consistent speed. It’s also a good way to avoid a worst-case
scenario: stutters between notes

