
 1

Correlation

The Custom-Font SDK
for Ti-83+ Ti-Basic

Programs

Rickie Malgren, aka Hot Dog

2

Table Of Contents
FOR BEGINNERS:

What is Correlation? 3
Important Terms 5
Introduction to Using Custom Fonts in a Ti-Basic Pr ogram 8
Designing a Font 12
Compiling a Font 19
Using Your Font in a Ti-Basic Program 21
Converting an Old Ti-Basic Game to Use a Custom Fon t 23
Tips, Tricks and Optimizations 25
Error Messages 27
List of Correlation Commands 50

ADVANCED TOPICS:

Special ln(and e^(Techniques 30
Advanced Text Graphics 33
Font Collections 36
Animated Text 38
Advanced Tips, Tricks and Optimizations 41
Advanced Error Messages 44
Introduction to Correlific Mode 46
List of Advanced Correlation Commands 51

CREDITS:

Special Thanks and List of Testers 47
Screenshot Credits 49

What is Correlation?
 When it comes to the Ti
Basic. Does that mean the games are inferior and undeserving of praise?
ABSOLUTELY NOT!
Ti-83+ are written in Ti-

 Many of these games ar
graphics. In such games, text can represent rocks, trees, a person,
ducks, even water if the programmer wants.
and notice that there are Os and |s for trees, and Xs for walls.

 Sadly, this text stuff doesn’t fully
people, etc. Do you know why? It’s because a text
use the Ti-83+ font. And the Ti
numbers, symbols and punctuation. It contains no pic

What is Correlation?

When it comes to the Ti-83+, a lot of games are written in Ti
Basic. Does that mean the games are inferior and undeserving of praise?

 Some of the greatest games ever written for the
-Basic.

Many of these games are text-based, meaning text is used for
graphics. In such games, text can represent rocks, trees, a person,

even water if the programmer wants. Check out this RPG game
and notice that there are Os and |s for trees, and Xs for walls.

stuff doesn’t fully resemble trees, rocks,
people, etc. Do you know why? It’s because a text-based game has to

83+ font. And the Ti-83+ font contain mostly letters,
numbers, symbols and punctuation. It contains no pictures, just text!

3

What is Correlation?

83+, a lot of games are written in Ti-
Basic. Does that mean the games are inferior and undeserving of praise?

Some of the greatest games ever written for the

based, meaning text is used for
graphics. In such games, text can represent rocks, trees, a person, bears,

Check out this RPG game
and notice that there are Os and |s for trees, and Xs for walls.

trees, rocks, walls,
based game has to

83+ font contain mostly letters,
tures, just text!

 Wouldn’t it be nice if you could replace or edit the TI
What if you could change all the text
when you use Output(or Text(you get something like this?

 But replacing or editing the Ti
the next best thing is creating your own font and using it in a Ti
program. And with Correlation, you can do that! You can create a font
that uses pictures in place of text. Anything
font, you can do with your custom font to create beautiful maps, worlds
and game levels. All you do is create a font and enter a few commands,
and Correlation handles the rest.

And best of all, your Ti
will run faster than a similar Ti
Correlation. Hard to believe? You’ll definitely see a difference as you
write processor-intensive

This guide is meant
fonts in your Ti-Basic game. So if you’re ready,
terms on the next page and making sure
mean. Or, my friend Rebma Boss pre
if you are interested: (LINK COMING SOON!)

Wouldn’t it be nice if you could replace or edit the TI-83+ font?
What if you could change all the text in the font into pictures so that
when you use Output(or Text(you get something like this?

replacing or editing the Ti-83+ font is hard or impossible,
the next best thing is creating your own font and using it in a Ti
program. And with Correlation, you can do that! You can create a font
that uses pictures in place of text. Anything you can do with the Ti
font, you can do with your custom font to create beautiful maps, worlds

All you do is create a font and enter a few commands,
and Correlation handles the rest.

And best of all, your Ti-Basic program, which uses Correlation,
will run faster than a similar Ti-Basic program that does not use
Correlation. Hard to believe? You’ll definitely see a difference as you

intensive Ti-Basic games that use Correlation.

This guide is meant to give you a sure footing in using customized
Basic game. So if you’re ready, start by looking at the

terms on the next page and making sure that you understand what they
Or, my friend Rebma Boss prepared a video tutorial on

(LINK COMING SOON!)

4

83+ font?
in the font into pictures so that

when you use Output(or Text(you get something like this?

83+ font is hard or impossible, so
the next best thing is creating your own font and using it in a Ti-Basic
program. And with Correlation, you can do that! You can create a font

you can do with the Ti-83+
font, you can do with your custom font to create beautiful maps, worlds

All you do is create a font and enter a few commands,

Basic program, which uses Correlation,
Basic program that does not use

Correlation. Hard to believe? You’ll definitely see a difference as you
rrelation.

in using customized
start by looking at the

that you understand what they
pared a video tutorial on YouTube

5

Important Terms

Character: A single symbol used in creating sentences. Letters of the
alphabet, punctuation marks and numbers are all characters. The Ti-83+
font has a total of 256 characters.

The first line,
“ARROW,” has 5
characters. The second
line has 9 characters.
The third line has 3
characters.

It is NOT necessary for your Correlation Font to have 256 characters.
You can have as few as 5 characters in your font, or a moderate number
of characters such as 110.

ASCII Value: A number that uniquely identifies and defines a
particular character. Every character that you can see on your computer
screen (or Ti-83+ screen) has a number that distinguishes that character
from another character.

Some example ASCII Values:

Uppercase A = 65

0 = 48

& = 38

Lowercase z = 122

6

Uppercase Letters from A to Z = 65 to 80, one number for each letter

Lowercase Letters from a to z = 97 to 122, one number for each letter

Starting Character Number: The smallest ASCII value allowed by a
Correlation font. If you choose a starting character number of 68 in your
font, you cannot display characters with ASCII values smaller than 68.
If the Ti-83+ font had a starting character number of 68 (the ASCII
value for “D”), you would not be able to display the sentence ABC using
your TI-Basic program.

Ending Character Number: The largest ASCII value allowed by a
Correlation font. If you choose an ending character number of 96 in
your font, you cannot display characters with ASCII values larger than
96. If the Ti-83+ font had an ending character number of 96, you would
not be able to display any lowercase letters using your Ti-Basic
program.

Horizontal Blank Space: The number of white pixels found between
two characters. This space keeps characters from running into each
other, as well as making text easy to read.

 In the first line of 0s, there is one
horizontal blank space between each 0.
In the second line of 0s, there are two
horizontal blank spaces between each
0. In the last line, there are NO
horizontal blank spaces between each
0, a good idea for fonts that use
graphical images in place of text.

7

Vertical Blank Space: The number of white pixels counted from the
bottom of one character to the top of the next. This space keeps lines
from running into each other, as well as making text easy to read.

 In the first column of 0s, there is
one vertical blank space between each
0. In the second column of 0s, there
are two vertical blank spaces between
each 0. In the last column, there are
NO vertical blank spaces between each
0, a good idea for fonts that use
graphical images in place of text.

8

Introduction to Using
Custom Fonts in a Ti-

Basic Program

 As you know, when you want to display text in a Ti-Basic
program, you can normally use Output(to display homescreen-style text
on 16 columns and 8 rows. You can also use Text(to display text on 96
rows and 64 columns.

 Whenever you create a custom font and want to use it in your Ti-
Basic program, you can still use Output(and Text(to display text using
the TI-83+ font. If you want to display text using your own font, you
will need to use ln(to display homescreen-style text with a custom font,
and e^(to display anywhere-on-screen text with a custom font.

 ln(1,1, Str0)

 e^(45, 20, sub(Str1,1,2))

 Now, I’m really sorry for stating the obvious here, but when you
use Output(and Text(, you are telling the calculator exactly what you
want it to display on the screen.

9

Output(1, 1, “ABCFE”) You will see the string “ABCFE.”
You will not see something funky such
as 183.!328.

Text(5, 2, “ACORN”) You will not see the string “DOG,”
and you will not see the word “BIRD.”
You will see the string “ACORN.”

 As you can see, your calculator will display exactly what you tell it
to. So let’s say you have this font that you made, with a bomb, a person,
a diamond and a can of soda:

 It would be nice if you could type in something like

Output(1,1, “ ”). But you can’t! That’s because you’re only
able to type characters that are part of the TI-83+ font. This diamond
symbol in your font is not part of the Ti-83+ font, so you can’t type it
using your keyboard.

 However, you are able to type in Output(1,1, “AAAAAA”). Can
you see where I’m going? Normally, the calculator will display what
you tell it t o display. But with the help of Correlation, you can tell the

10

calculator to display something DIFFERENT from what you type! In
this case, you can tell the calculator to display the diamond from your
font every time it reads an A. So ln(1,1, “AAAAAA”) would display 6
diamonds. (By the way, remember that you use either ln or e^ to display
text using a custom font.)

 And you don’t need to stop there! Using Correlation, you could
tell the Ti-83+ to display the soda pop can (at the bottom of the sample
font) whenever your Ti-83+ reads a “B” inside of a string. So ln(5,7,
“ABBBA”) would display diamond, soda, soda, soda, diamond.

 I’m going to call this process assigning. Essentially, you assign a
character of your custom font to a character of the Ti-83+ font. In the
above examples, you assigned a diamond to the letter “A”, and you
assigned a soda can to the letter “B”.

 There’s a catch when you assign characters from your font to
characters of the Ti-83+ font. You can only assign the first character of
your font, after which the rest of the characters are assigned
automatically, in the order the characters are drawn.

 Here’s the deal. Taking a look at the example font on page 8, let’s
say you assign the bomb to a particular character of the Ti-83+ font—
we’ll refer to this Ti-83+ character as Character 1. With the bomb
assigned to Character1, the person in your font will be assigned to the
character after Character 1. The diamond in your font will be assigned
to the character two characters away from Character 1. As you might
expect, the soda-can will be assigned three characters away from
character 1.

 So let’s say you assign the bomb to the letter “T.” Then every time
the calculator reads the letter T in a display routine, it will show a bomb.
If the calculator reads a “U” inside of a string, it will show a person.

11

The calculator will show a diamond if it reads a V, and a soda can when
it reads a W. ln(1,5, “TTWUV”) translates to displaying bomb, bomb,
soda, person, diamond.

 So, you’re probably asking by now, “If I know what TI-83+
character to use to display the first character of my font, how will I know
what characters of the Ti-83+ font to use to display OTHER characters
of my personal font?” The answer is simple: use the table I have given
you, called “Ti-83+ Character Codes”. This page provides a bunch of
characters you can type, from left to right, top to bottom, in the order
they appear in the Ti-83+ font. Since these characters are in order, you
can look at what you assigned the first character of your custom font to,
and find out other characters from there.

 Suppose that you look at the table and assign the “bomb” in your
font to the number 8. Then Correlation will automatically assign the
person to the number 9. Whenever you use Output(with a negative sign
in the string, you will see a diamond instead of a negative sign. And
finally, E will be replaced with the soda can. e^(0,0, “8989- E”) will
display bomb, person, bomb, person, diamond, soda can.

 By the way, be aware that there are some ASCII values on the Ti-
83+ that you cannot type characters for. These are marked with black
boxes on the table.

 12

Designing a Font

 Creating your own font is relatively straight forward, but there are
some considerations you have to take into account before you begin the
drawing process. You will need a computer with a program that can
create monochrome bitmaps. For computers equipped with Microsoft
Windows, I highly recommend Microsoft Paint.

 The first thing you want to consider is how big you want each
character in your font. The smaller the characters in your font are, the
more characters you can display on screen at once. However, small
characters aren’t as detailed, and require bigger strings in your Ti-Basic
program. Larger characters are more detailed and require less string
space in your Ti-Basic program, but you can’t display as many distinct
characters on screen at once.

 The standard Ti-83+ Homescreen font has characters 5 pixels wide
and 7 pixels high. (From this point onward, I will call this font a 6x8
font because there’s one horizontal blank space and one vertical blank
space for each character. This technically means each character needs
its own space 6 pixels wide and 8 pixels high) In a 6x8 font, characters
are somewhat detailed, but you can’t display a lot of text on the home
screen. On the other hand, the Ti-83+ “Small Text” font has characters
that average to 3 pixels wide and 5 pixels high. This means the
characters are low on detail, but one can see more text at once.

 So if you want a game with detailed images, you should use a large
font—16 wide by 16 high is very common for this. If you want a game
that will display more, you’ll want a smaller font. A lot of people use 8

13

wide by 8 high characters for this purpose. I have found the 6x8
homescreen font to be a very, very common font size as well.

Below is a game using 16 x 16 sized characters as a font size with no
blank spaces between characters. Notice that only 24 characters—6
across and 4 down—can be displayed at once.

The next screenshot is another game using the common 6x8 sized
homescreen font size, with a horizontal blank space and a vertical blank
space between each character. Notice that it can display 12 characters
across and 8 characters down, although the detail is slightly less because
of smaller characters. By the way, notice what horizontal and vertical
blank spaces do to the checkpoint at the top of the picture—it looks like
someone took a chainsaw to it and cut it into several pieces.

Now for a 4 x 4 font with no blank spaces between characters.
the detail is almost non-existent and the string size is
display 24 characters across and 16 characters down.
detailed the white pathways are

All characters in your font must be the same size. Furthermore,
your characters can be no bigger than 16 pixels
nor can it be smaller than 2 pixels wide by 2 pixels high

Once you decide on
will need to decide if you want any horizontal or vert
between the characters.
horizontal and vertical spacing for any text
inside of your font, so that your text
graphical-based characters
avoid having any spacing
image. This is not a hard
Notice on the above image, for example, there’s a
space between the flags and the road because it
nicer and clearer. Similarly

4 x 4 font with no blank spaces between characters.
existent and the string size is large, one can

display 24 characters across and 16 characters down. Notice how finely
white pathways are because of how small the tiles are.

All characters in your font must be the same size. Furthermore,
your characters can be no bigger than 16 pixels wide and 16 pixels high
nor can it be smaller than 2 pixels wide by 2 pixels high.

on the font size that you would like to use
decide if you want any horizontal or vertical spacing

 As a good rule of thumb, you will want to have
horizontal and vertical spacing for any text-based characters

, so that your text is easy to read. If there are
characters inside of your fonts, you will usually

avoid having any spacing so that your game looks like a complete
image. This is not a hard-and-fast rule, however, just a suggestion

above image, for example, there’s an intentional
space between the flags and the road because it makes the world look

Similarly, on the image of the racecar track, blank

14

4 x 4 font with no blank spaces between characters. Although
large, one can
Notice how finely

because of how small the tiles are.

All characters in your font must be the same size. Furthermore,
and 16 pixels high,

the font size that you would like to use, you
ical spacing

As a good rule of thumb, you will want to have
 you place

If there are
will usually want to

ame looks like a complete
, just a suggestion.
n intentional blank

makes the world look
, on the image of the racecar track, blank

15

spaces help us in determining the difference between the road block sign
and the car next to it.

In this sample font, all letters of the alphabet are separated
by horizontal and vertical white spaces (represented as red lines
in this picture). That way text can easily be readable. (DO NOT
add red to your custom font, by the way, no matter how many
times you see it in the examples.)

With the graphics, however, there are NO blank spaces between
characters of the font. When you create a world with dirt, rivers,
signs and roads, you want everything to look seamless.
Remember that at the bottom of page thirteen, the “checkpoint
sign” on the racecar track had horizontal and vertical blank
spaces, and it did not look pretty whatsoever.

So keep these ideas in mind. Once you decide on a font size (and
for practice, I highly recommend 6x8 or 8x8), open up your paint
program. Start by setting the width of your bitmap to the width of your
choice. Your height should be the height of each character, multiplied
by the number of characters you want. Notice from the sample font that
characters are placed one after the other in a straight line.

 When drawing the characters inside of your font, each character
requires its own “area” for lack of a better word. In a 6 x 8 font, every
character requires space 6 pixels wide by 8 pixels high. You’ll want to
start at X = 0 and Y = 0 on the bitmap to draw your first character. Your
next character will be at Y = Character Height, X = 0. Then the
character afterwards will be drawn at Y = Character Height * 2, then

16

Character Height * 3, and so on. Look at the sample 6x8 font at the top
of the previous page. The character “A” is drawn at Y = 0. The
character “B” is drawn at Y = 8. The character “C” is drawn at Y = 16.
The car is drawn at Y = 24.

As you draw your font, remember to include blank spaces where
appropriate. If your next character requires horizontal blank spaces, that
character should be thinner than the width of your bitmap. Suppose you
are creating a font 6 pixels wide. A character with a desired horizontal
blank space of 1 should be 5 pixels wide with one pixel of white space.
A character with a desired horizontal blank space of 2 should 4 pixels
wide. Of course, a character 6 pixels wide on this particular bitmap will
have NO horizontal blank space.

When taking into account vertical blank spaces, the same rule
applies similarly. Let’s say that your font consists of characters no
bigger than 8 pixels high. A character of text should have at least one
vertical blank space, so you would want to make the character only 7
pixels high. Then you will need to make sure there is one pixel of blank
space between the bottom of the aforementioned character and the top of
the next character. For graphical characters on a font with 8-pixel-high
characters, you’ll want to consider NO WHITE SPACES between
most—if not all—of the characters. Yes, that means placing your
graphical characters right on top of each other.

IMPORTANT: Be aware of what Ti-83+ character you wish to
assign the first character of your custom font to. Suppose you assign the
letter “A” in the previous page’s example font to the Ti-Basic word
prod(. Looking at the table of Ti-83+ characters, ln(3,4,
“prod(not(iPart(fPart(”) will display the A, the B, the C, and the car. But
what about the checkered flag? You can’t enter a character that will
display the checkered flag, so you will never be able to display the

17

checkered flag! In this case, you’ll want to force Correlation to assign
the checkered flag to the next available character, the square-root sign.
You can do this by making blank the character that Correlation would
have assigned to the Ti-Basic character you can’t type.

After you have finished drawing all the characters that you would
want to display in your Ti-Basic game, there might be some unnecessary
white space at the bottom, space from making the height of your bitmap
too big. You’ll want to clip this off, but remember to leave vertical
blank space for you bottom character if it requires vertical blank space.

Make sure your font has all the characters and blank spaces that
you want. After words, you’ll want to adjust the width of your bitmap
as follows: If your font is 8 pixels wide or less, the width of your bitmap

18

should be adjusted to be exactly 8 pixels. Otherwise, your bitmap width
must be 16 pixels. Save your bitmap as a monochrome bitmap and DO
NOT COMPRESS IT. Also, since this will go to your calculator
eventually, the first character of your filename should be a letter,
and the rest should be 7 letters or numbers. Your filename must also
be at least 8 characters long. A8SEIFILCMWOW.bmp is a valid
filename, 3_SL3__.bmp is not.

That’s it! Your font is done! However, you can’t put a bitmap
onto your calculator, so read the next chapter to learn how to compile
your font into a Ti-83+ program that CAN be placed on your calculator.

19

Compiling a Font

 Correlation comes with a CLI font compiler and a GUI font
compiler, both of which let you compile a monochrome bitmap font into
a Ti-83+ program that you can use with Correlation. Both programs are
available in case one works and the other doesn’t. You will need java,
and you will also need to make sure that your bitmap and the programs
are in the same folder.

 Running CorrelationFontCompiler.jar is straight forward once you
know how to run CorrelationFontCompiler.class, so I will mostly
provide instructions for using the CLI version of the compiler. Open a
CLI, such as Windows Command Prompt, and go to the directory where
the program is located. Type in java CorrelationFontCompiler.

Under “bitmap image to parse,” type in the name of your bitmap,
including “.bmp”. Note that your bitmap should be in the same folder as
CorrelationFontCompiler.class.

 For “width of each character,” type in how many pixels wide each
character of your font is. For “height of each character,” type in how
many pixels high each character of your font is.

 For the next step, you will see “Starting Character Number.” On
the table where you see all the TI-83+ font characters, choose the
character that you want to assign the first character of your font to. Then
use the columns and rows to find its hexadecimal value. (For example,
“H” is 48, since it’s on column 8 and row 4) Convert this number to
decimal and enter this as your starting character number.

20

 Now take this number, subtract 1, and add the number of
characters in your font. This will be your “Ending Character Number.”
Enter this in.

 That’s it! Your font will compile to a Ti-83+ program, and the
name of the program will be taken from the name of your bitmap.

 If you are using the GUI version of the font compiler, you must
specify a name for your program. Remember that the name must be 8
characters long, and a valid program name. Sorry, you cannot use Theta
in the name.

21

Using Your Font in a
Ti-Basic Program

 The important thing to remember about Correlation is you can
display custom-font text in a manner very similar to displaying Ti-83+
text in a Ti-Basic program. There are some lines of code you have to
add to your TI-Basic program, but other than that the transition to
Correlation is very smooth, mostly turning one instruction into another.
So take note, if there’s a great Text-Based Ti-Basic game that you
want to convert to use a custom font with Correlation, it is not hard to
do so, just read the next chapter for more information.

 If you want to use Correlation, you require two programs:
pgrmCORELATE and the Corelate application. pgrmCORELATE must
be stored in RAM. Your font(s) can be stored in either RAM or in the
archive.

 You must have the line 1:Asm(pgrmCORELATE before
Correlation will run in your program. You don’t have to start your Ti-
Basic program with this line, but it’s not a bad idea to do so. This line
prepares the Ti-Basic program to use your custom font.

Also, you must have the line 0:Asm(pgrmCORELATE before the
end of your Ti-Basic program. Thus, if there are several areas where
your program could end, you must have 0:Asm(pgrmCORELATE at
each of those spots. This line of code closes Correlation so that your
calculator can run normally again.

22

 While you can use several fonts in your Ti-Basic program, you can
display text using only one font at a time. Use the instruction int(to
select your font. int(must be followed by the eight characters of your
font name, with ONE quotation mark at the beginning. (DO NOT put
quotation marks at the end.) For example, if your font is stored in
pgrmTESTFONT, use int(“TESTFONT to select that font for displaying
text. You can use int(at anytime during your program to select another
font.

 Remember that you use ln(to display text in a similar manner that
Output(does, and you use e^(to display text in a manner similar to
Text(. ln(will only work with a 6x8 font, but Text(can work with any
font size up to 16 x 16.

 The last thing that you need to know for right now is that after you
use ln(and e^(, you will not see your text immediately. Normally, when
you use Output(and Text(, every line of text drawn is shown
immediately, and that slows your Ti-Basic program down. Correlation
takes care of this by not displaying text drawn with ln(and e^(until you
ask it to. Rather, it prepares it, so that when you are done drawing all
your text and use int(“DD to display it, all text will show up at once.
This will greatly increase the speed of your program.

 You can also display text ready to drawn by using any of the TI-
Basic drawing and graphing commands, such as Pt-On(. Note that if
there’s any text you would not normally redraw in a Ti-Basic program,
you do not need to redraw it with Correlation.

23

Converting an Old Ti-
Basic Game to Use a

Custom Font
If someone has written a game that uses the homescreen, you can

create a 6x8 font to replace the one for their game. While you can do the
same for a game that uses text on the graph screen, it’s a little harder.
This is because all characters in you font must be the same size, whereas
the Ti-83+ graphscreen / small font has characters of different sizes.
Caution is recommended when converting a Ti-Basic game that uses the
small font. I also advise using a 3x5 font for this purpose.

 To convert an older Ti-Basic game, remember to include
1:Asm(pgrmCORELATE) wherever the program starts, and
0:Asm(pgrmCORELATE) wherever the program ends. Do not forget, in
addition, to use int(to specify the font that will replace the default TI-
83+ font.

 Now comes the fun part: Search the program for any lines with
Output(or Text(. If you find Output(and you want it to display its
contents using the default homescreen text, leave it alone. Same with
Text(. However, change Output(to ln(if you want to display
homescreen text using a customized font. Also, change Text(to e^(for
any text that you want displayed using a customized font.

24

 Finally, remember to use int(“DD when you are ready to display
any text that was drawn. As was aforementioned, any text that you draw
will not be seen until you use the command int(“DD.

25

Tips, Tricks and
Optimizations

• The Run Indicator is the little bar that you see at the upper-right
hand corner of your screen sometimes, the bar that says your
calculator is busy. (Screenshot)

You can turn off the Run Indicator by placing int(“RN in your Ti-
Basic program. Use int(“RY to turn it back on. Note that you
should turn it back on when your program exits.

• While sub(is useful for getting substrings, you can use abs(to get
substrings for strings that you use with Correlation. Abs(works
much faster than sub(does. Abs(Str0, 4, 20) will take 20
characters from Str0, starting at the 4th character. Make sure that
your string does not have any illegal characters (meaning
characters not found on the TI-83+ character table), or you will get
funky results. Just like with int, you can use abs(for math by
specifying only one parameter.

• If you want speed in your program, fonts 16 pixels wide will
display the fastest, hands down. However, fonts 8 pixels wide (or
6 pixels wide with ln) have decent speeds as well.

• It’s a well-proven fact that when you design a font for a calculator,
your Ws and Ms must be at least 5 pixels wide, or people won’t be
able to tell that they are Ws and Ms. For a font with letters less
than 5 pixels wide, you can tell Correlation to make Ws and Ms
wider than the rest of the characters. For example, take a look at
the example font below:

26

This font has characters 3 pixels wide, but you can tell Correlation
that the W and M MUST be 5 pixels wide. (This is called
WMMode .) Notice in the picture that the W is indeed 5 pixels
wide. To turn on WMMode, use the command int(“WY. Use
int(“WN to turn off WMMode. (screenshot without WMMode,
and with WMMode) Be careful, your W must be assigned to the
Ti-83+ W and your M to the Ti-83+ M for this to work.

• There are only so many characters available on the Ti-83+ keypad.
With the fact that you might be forced to click menu after menu to
retrieve values such as product(and solve(for some font
characters, a font with over 200 characters can be hard to work
with. A huge font is indeed necessary for some games, but
whenever you can, try to have several fonts using characters A-Z
(and other easy-to-reach characters) as opposed to one big font.

• int(is the only Ti-Basic command that has a strict format in
Correlation. Other than that, if there are optimizations you like to
use in Ti-Basic programs, you can use those same optimizations
with Correlation commands.

27

Error Messages

Occasionally, you may come across an error message that you’ve
never seen in Ti-Basic before. These error messages are provided by
Correlation to help you find errors that you may have made. This
section of the guide will explain error messages and the mistakes that
you should fix inside of your program as a result.

ERR: MISSING APP

You will receive this error if your Ti-83+ is missing the application
Corelate. To use Correlation, Corelate MUST be on your calculator.

ERR:NO SUCH FONT

You are attempting to use int(to load a font that doesn’t exist. Make
sure that you typed the font name correctly and that the font is indeed on
your calculator.

ERR: OPTION

Before Asm(pgrmCORELATE, you must have either 1: or 0:, such as
1:Asm(pgrmCORELATE. Also, DO NOT end the line in parenthesis.

28

ERR: DOMAIN

Okay, so you’ve seen this error before. Just make sure that you specify
acceptable values inside of your function. I’m reminding you of this
error because there are ranges for parameters you may have never
encountered before.

ERR:INT(

int(is the one command that requires a strict format if you use
Correlation. If you specify an invalid parameter or if you put quotation
marks at the end, you will receive this error.

ERR:OUT OF RANGE

Every font has a range of characters you can display using strings. This
range is from your Starting Character Number to your Ending Character
Number. If you attempt to go outside of this range, you will receive this
error. Correlation will return an error, for example, if you try to use an
“!” for a font that only allows A-Z.

ERR: WHICH FONT?

You will see this error if you are attempting to use ln(or e^(to display
text without having selected a font first.

29

ERR: WRONG SIZE

When you use Ln(to display strings, the characters inside of your font
must be 6 pixels wide by 8 pixels high. You must select another font to
use if the characters do not follow this format, or use e^(instead.

ERR: NOT ALLOWED

You are using a character inside of your string that you are not allowed
to use to display a custom font. (Refer to the Ti-83+ Character Table)
For example, Select(is not something you can use to display a character
from your custom font. This error usually comes from mistyping a
character.

ERR:INVALID FONT

You are using int(to select a program that isn’t a compiled font.

30

Special Ln(and e^(
Display Modes

These are advanced techniques to use when you understand the basic
concepts of Correlation. I do not recommend these techniques for
people using Correlation for the first time. Also, I also recommend they
only be used when you are making a fresh TI-Basic game—using them
on an already-made TI-Basic game is strongly discouraged.

Text can be displayed in one of four different ways in Correlation:
Clip Mode, Wrap Mode, Word Wrap Mode and Map Mode. If you’ve
done a lot of Ti-Basic programming, you are most likely familiar with
clip and wrap mode, even though the names are somewhat unheard of.

In Clip Mode, text will stop displaying once the edge of the screen
is reached. If you ever used Text(in a Ti-Basic program, the displayed
text uses clip mode. Use int(“M0 to start displaying text using Clip
Mode.

If text is displayed using Wrap Mode, characters will be drawn
until a line is full, after which the characters will continue onto the next
line on the screen. If you ever used Output(in a Ti-Basic program, it
normally uses Wrap mode. This is also the default mode used for ln(
and e^(. To display text using Wrap Mode, include the line int(“M1

Word Wrap Mode is a special mode that takes a string and draws
it Word Wrap style—that is, moving text from line to line to create an

31

easy-to-read paragraph. The game will then pause and allow the user to
scroll text up and down until enter or ON is pressed. This allows a user
to create storylines with long text without having to make a bunch of
complex calculations. Use int(“M2 to display text using Word Wrap.
Word Wrap Mode cannot be used on fonts with characters larger than 8
pixels wide; attempting to do so will return an ERR:WRONG SIZE.

For Word Wrap mode, you must have ASCII character 41 in your
font to allow spaces, and you also must have ASCII character 91 in your
font (Theta on the Ti-83+ character table). That means the starting
character value in your font must be 41 or less, and your ending
character value must be 91 or more.

When displaying a string using Word Wrap, use the Ti-Basic
command “and” in your string to represent a pause, that is, when you
want the user to scroll text and/or press Enter and On. You can use
“and” between sentences to separate text so that the user has to press
Enter to view the next section of text. When your string contains all the
text you want to display, you must end it with “and” and the letter theta.

Word Wrap lets a user press the down key up to 50 times for a
single section of text. If the particular section of text you are displaying
requires the user to press down more than 50 times—that is, if your text
takes more than 50 lines—you will receive an error message when the
user presses the down key for the 51st time.

Map Mode is another special mode that is meant for games such
as Text-Based RPGs. Normally, you probably used multiple strings
and/or sub(to display a text-based map that you could move around.
However, with Map Mode, you only need one string (containing the text
you would use to display a map) and a map-width, such as “30
characters wide.” Take your map data and place it in your string, one

32

row of data after another so that all the rows of your maps are placed
together in one string. Correlation handles the rest so that your map
comes out right without any weird text wrapping or clipping.

 If you have these strings for a map with 7 rows:

 ABBCADED
 EIDLSKWS
 GIELDDDD
 ISOE
 DKE
 AO D
 A SDFD

 Put them together in one string like this:

“ABBCADEDEIDLSKWSGIELDDDDISOE DKE AO DA SDFD”

Use int(“M3 to enter Map Mode. Store a value into ThetaStep to
specify a map width, which cannot be bigger than 99. Note that the
height of your map does not need to be specified.

For all methods of displaying text, you can specify a window for
text to be displayed in. Any text (or portion of text) that is drawn
outside the window will not be displayed. Use ThetaMin for the left-
hand coordinate of your window and ThetaMax for the right-hand
coordinate of your window. Use TMin for the top of your window and
TMax for the bottom of your window.

33

Here, the map doesn’t draw over the
entire screen in this screenshot. That
way, the status bar on the far right
won’t be erased. For this window,
ThetaMin = 0, ThetaMax = 80, TMin
= 0 and TMax = 63.

If you change even one window coordinate or the width of a map
(with ThetaStep), even for the first time, you must use int(“FF to tell
Correlation to make the proper adjustments.

34

Advanced Text
Graphics

These are advanced techniques to use when you understand the basic
concepts of Correlation. I do not recommend these techniques for
people using Correlation for the first time. Also, I also recommend they
only be used when you are making a fresh TI-Basic game—using them
on an already-made TI-Basic game is strongly discouraged.

 By default, any text that you draw will erase anything underneath
it. You have probably seen this when you used Output(and Text(in
your old Ti-Basic programs. This method of displaying text is called
OVERWRITE, because the text erases/overwrites everything underneath
it.

 When you draw text from a font with graphical characters,
however, you might want to have some transparency so that you don’t
erase the background. Correlation allows you to draw text with
transparency whenever you use ln(and e^(.

 Suppose you want black pixels in your font to be drawn and white
pixels to be transparent. (This is called OR.) Just include the line
int(“E1 , and all text afterwards will be drawn with this form of
transparency.

 int(“E1

 ln(2,7, “EISFE”)

35

 e^(45,12, Str0)

 If you include the line int(“E2 , your font will be drawn with an
XOR method. White pixels will be transparent, and black pixels will
INVERT the colors of anything underneath them.

If you include the line int(“E3 , your font will be drawn with an
AND method. White pixels will be drawn normally, and it’s the black
pixels that will be transparent.

To switch back to OVERWRITE mode, use int(“E0 .
OVERWRITE mode is the default method for drawing text with
Correlation.

Sometimes you’ll have a graphical character in your font where
you want some parts white, some parts black, some parts inverted, and
some parts transparent. If you want to do that, you need to use int(“E4 .

This method is called drawing a MASKED font character, and the
method is usually used for drawing a graphical image where you want
black, white and transparency all at once. However, if there’s a
graphical character you want to draw MASKED, you have to make
some adjustments to your font. A Masked font character requires a
regular character and a mask to go with it. So two character’s worth of
bitmap font space is required—the first space for your regular character,
the other space for its mask.

36

For the first part of your masked font character, any part that you
want white or transparent should be colored white, and any part that you
want black should be colored black. For the second part of your
character, paint any transparent part black and any other part white.
Notice in the example above that in the “mask” part of the checkered
flag in the font, the transparent area is black and everything else is white.

Masked text draws slower than other text, so don’t abuse masked
text. Believe me: you don’t need a lot of masked graphics for a game.

37

Font Collections
These are advanced techniques to use when you understand the basic

concepts of Correlation. I do not recommend these techniques for
people using Correlation for the first time.

 Sooner or later you may plan on making a game that requires ten
or more fonts. Using int(to specify the 8-character name of each font
takes a lot of program space, especially when you need to switch back
and forth between fonts.

 An alternative method is to create what’s called a “ font
collection.” Suppose you were to create a Zelda game that required 15
fonts. What if you gave the 15 fonts these names?

ZELDAF00, ZELDAF01, ZELDAF02, ZELDAF03, ZELDAF04 …
ZELDAF13, ZELDAF14

Notice that these fonts all end in two numbers. So there’s a catchy
way to select a font using much less program space. Start by using int(
to specify the full name of the font that ends in two 0s.

int(“ZELDAF00

After that, you can select any of these 15 fonts using only the two
digits at the end.

int(“01

int(“13

38

Note that if you start your program with, for example, int(“03,
Correlation will not know that you are using a font collection! You must
always start with the full name of the first font in your collection, the
font with two 0s at the end. You will receive an ERR:WHICH FONT? if
you use int(with a two-digit number without specifying the first font in
your collection.

You will also receive an ERR:NO SUCH FONT if you use int(
with a two-digit number that does not exist in your font collection. In
our example of Zelda, int(“15 would return an error.

A font collection can contain up to 100 fonts, ending in 00-99.
These fonts do not need to be the same size or height/width as each
other.

Animated Text
These are advanced techniques to use when you understand the basic

concepts of Correlation. I do not recommend these
people using Correlation for the first time.

 You can design your font so that some of the characters are
animated. Animation is often used for effects such as water and blinking
lights.

 In the above screenshot, the clock is animated so that the big hand
moves. Notice that there are four diffe
four frames used to animate it and make the big hand move clockwise.
If we were to take these four images and arrange them into a bitmap for
a Correlation font, it might look like this:

 In fact, that’s just h
You take a series of images that you want to run in succession,
over and over again. Then you put them on top of each other in the

Animated Text
These are advanced techniques to use when you understand the basic

concepts of Correlation. I do not recommend these techniques
people using Correlation for the first time.

You can design your font so that some of the characters are
animated. Animation is often used for effects such as water and blinking

In the above screenshot, the clock is animated so that the big hand
moves. Notice that there are four different images of the same clock,

used to animate it and make the big hand move clockwise.
If we were to take these four images and arrange them into a bitmap for
a Correlation font, it might look like this:

In fact, that’s just how you create animated text for Correlation.
You take a series of images that you want to run in succession,
over and over again. Then you put them on top of each other in the

39

Animated Text
These are advanced techniques to use when you understand the basic

techniques for

You can design your font so that some of the characters are
animated. Animation is often used for effects such as water and blinking

In the above screenshot, the clock is animated so that the big hand
rent images of the same clock,

used to animate it and make the big hand move clockwise.
If we were to take these four images and arrange them into a bitmap for

ow you create animated text for Correlation.
You take a series of images that you want to run in succession, rotated
over and over again. Then you put them on top of each other in the

bitmap, in the order you want them to run. Punch in a few lines in your
Ti-Basic program, and bam! Correlation does all the animation for you.

 Animation only works with characters assigned to Ti
characters from Radian to Pxl
from top to bottom in the order
the character that the FIRST frame of your animation is assigned to.
Suppose, for example, that the images of the clock animation are
assigned to these four characters:

Then you would use e^(0,0, “Radian”) to display the clock at the
upper-left hand corner of the screen.
assigned to Eng, since Eng comes four characters after Radian
proceeds immediately after Sci)
animation for you, it is your responsibility to know which character to
use to display a particular animated character.

If you were to use int(“DD at this point, your clock would be standing
still, and the big hand wouldn’t move an inch. Don’t worry, Correlation
knows that the clock should be animated. Every time you use int(“DD,
your animation will advance one frame. So by displaying your map over
and over in conjunction with int(“DD, you will see an animated clock.

bitmap, in the order you want them to run. Punch in a few lines in your
sic program, and bam! Correlation does all the animation for you.

Animation only works with characters assigned to Ti-83+
characters from Radian to Pxl-Change(. Once your images are aligned
from top to bottom in the order that you want them animated, you us

the FIRST frame of your animation is assigned to.
Suppose, for example, that the images of the clock animation are
assigned to these four characters:

Then you would use e^(0,0, “Radian”) to display the clock at the
orner of the screen. Your next animation would be

assigned to Eng, since Eng comes four characters after Radian
immediately after Sci). While Correlation handles all

animation for you, it is your responsibility to know which character to
a particular animated character.

you were to use int(“DD at this point, your clock would be standing
still, and the big hand wouldn’t move an inch. Don’t worry, Correlation
knows that the clock should be animated. Every time you use int(“DD,

ation will advance one frame. So by displaying your map over
and over in conjunction with int(“DD, you will see an animated clock.

40

bitmap, in the order you want them to run. Punch in a few lines in your
sic program, and bam! Correlation does all the animation for you.

83+
Once your images are aligned

you want them animated, you use
the FIRST frame of your animation is assigned to.

Suppose, for example, that the images of the clock animation are

Then you would use e^(0,0, “Radian”) to display the clock at the
Your next animation would be

assigned to Eng, since Eng comes four characters after Radian (Eng
. While Correlation handles all

animation for you, it is your responsibility to know which character to

you were to use int(“DD at this point, your clock would be standing
still, and the big hand wouldn’t move an inch. Don’t worry, Correlation
knows that the clock should be animated. Every time you use int(“DD,

ation will advance one frame. So by displaying your map over
and over in conjunction with int(“DD, you will see an animated clock.

41

Lbl AN

 e^(0,0, “Radian”)

 int(“DD

Goto AN ;Every time you Goto AN, you will see a different
image of the clock, as if the clock is moving.

 You must use int(“AY to turn animated tiles on, and int(“AN to
turn them off. In addition, you will need to tell Correlation how many
frames you want your animation to be. Our clock animation took four
frames, but sometimes you may want 2 frames, 16 frames, or even 1
frame (meaning your image doesn’t animate, just in case you want to use
ZoomSto, Radian or anything similar to draw a non-animated character
of text). To let Correlation know how many frames each animation
should take, use det(. Your input will be a list of numbers telling
Correlation how many frames each animation takes. Suppose that you
have 4 animations: A clock with 4 frames, a running dog with 3 frames,
a tree that does absolutely nothing (1 frame), and a traffic light with 4
frames.

det({4,3,1,4}) A total of 12 frames, by the way

 You have a limit of 64 total frames to use for your Ti-Basic
program. There is, however, one exception. The very last animation
you create in your bitmap can have up to 99 frames. So if you use up
the characters assigned from Radian to Pxl-Off(, you can use Pxl-
Change to draw a 20 character animation if you want to do so.

42

Advanced Tips, Tricks
and Optimizations

These are advanced techniques to use when you understand the basic
concepts of Correlation. I do not recommend these techniques for
people using Correlation for the first time. Also, I also recommend they
only be used when you are making a fresh TI-Basic game—using them
on an already-made TI-Basic game is strongly discouraged.

• You can specify a negative value for X and Y coordinates with ln(
and e^(. Your negative values can be as low as -9999. This
method will also display text faster than when you had to use sub(
for strings displayed with the normal Ti-83+ text. Note that a
value of 0 in ln—and ONLY ln—will translate to -1, and a value of
-1 will translate to -2, and so on.

• If you have a library or asm program such as Xlib, AppVar or
Celtic III that you want to use in your Ti-Basic program, you can
use it in conjunction with Correlation. However, you must
temporarily switch from Correlation to your other library. Use
int(“CN to turn Correlation off, allowing you to use another
library. Use ZoomSto to turn Correlation on again. Be aware that
Correlation does not allow you to use, for example, Xlib and Celtic
III with each other.

43

• If you are creating a mask-able character, you may occasionally
come across a situation where you want parts of your masked
character to invert pixels underneath when the character is drawn.
To do this, paint black this area in BOTH your normal character
and its mask.

The outline of the flag, as well as the flag pole,
will now invert any pixels that are underneath
them when the checkered flag is drawn.

• Remember that masked characters require space in a font equal to
2 characters. The mask can be placed on a spot that you cannot
normally type a character for. Look at the Ti-83+ Character table
and observe that you cannot type in the character that comes
immediately after the colon, located at 3E on the table. However,
when you are designing your font, if you place the mask of your
masked character in that spot, you can use, for example, ln(0,0,
“::”), and your masked character will display without any issues or
error messages.

The same concept applies to animated text. The first frame of each
of your animations MUST be placed on a spot that you can type a
character for, but any following frames can
you cannot type characters for.

• int(“DD is good when you want to display text you drew all at
once. However, int(“DD updates the entire screen. If you are
writing a game where only one character is drawn over and over
without erasing the background, it is faster to update that one
character rather than the entire screen. You can use int(“EY to tell
Correlation to display a character the moment it is drawn. Use
int(“EN to turn this off
until it encounters the line int(“DD

• Occasionally you may have written a Ti
draw a single character of text and have to erase it constantly
that it looks like it is moving
Output(1,1, “A”) to d
was a person or something. Then you would have used
Output(1,1, “ ”) to erase the A before drawing
else. However, if you want, Correlation can do all the erasing
you. You can draw yo
you want to move the A somewhere else
it to do so, as well as int(“BN to stop. Note that int(“EY and
int(“BY can be used in conjunction with each other.

The same concept applies to animated text. The first frame of each
of your animations MUST be placed on a spot that you can type a
character for, but any following frames can be placed in spots that
you cannot type characters for.

int(“DD is good when you want to display text you drew all at
once. However, int(“DD updates the entire screen. If you are
writing a game where only one character is drawn over and over

erasing the background, it is faster to update that one
character rather than the entire screen. You can use int(“EY to tell
Correlation to display a character the moment it is drawn. Use
int(“EN to turn this off, meaning Correlation will not display tex
until it encounters the line int(“DD.
Occasionally you may have written a Ti-Basic game where
draw a single character of text and have to erase it constantly
that it looks like it is moving. For instance, you might have used
Output(1,1, “A”) to display the letter A, pretending that the letter A
was a person or something. Then you would have used
Output(1,1, “ ”) to erase the A before drawing the A somewhere
else. However, if you want, Correlation can do all the erasing

. You can draw your A, then Correlation will erase it when
you want to move the A somewhere else. Just use int(“BY to ask
it to do so, as well as int(“BN to stop. Note that int(“EY and
int(“BY can be used in conjunction with each other.

44

The same concept applies to animated text. The first frame of each
of your animations MUST be placed on a spot that you can type a

be placed in spots that

int(“DD is good when you want to display text you drew all at
once. However, int(“DD updates the entire screen. If you are
writing a game where only one character is drawn over and over

erasing the background, it is faster to update that one
character rather than the entire screen. You can use int(“EY to tell
Correlation to display a character the moment it is drawn. Use

, meaning Correlation will not display text

Basic game where you
draw a single character of text and have to erase it constantly so

. For instance, you might have used
isplay the letter A, pretending that the letter A

was a person or something. Then you would have used
somewhere

else. However, if you want, Correlation can do all the erasing for
ur A, then Correlation will erase it when

. Just use int(“BY to ask
it to do so, as well as int(“BN to stop. Note that int(“EY and

45

Advanced Error
Messages

ERR: TOO LONG

Word-wrapping only works with text that takes no more than 50 presses
of the down key to view. You will need to shorten your text—or change
your display window (to show more text at once)—if it is larger than
that. Lines are counted as you scroll the text down, so make sure you
test for an error by scrolling to the bottom of the string that you
displayed. You only need to check for this error once per string that
uses Word Wrapping.

ERR: NO SPACE

When you use Word Wrap mode, your selected font must have a starting
character value 32 or less. Spaces are used to help Correlation in
arranging your text into a readable paragraph.

ERR: NO THETA

When you use Word Wrap mode, your selected font must have an
ending character value 91 or more. Theta tells the calculator to stop
displaying new sections of text.

46

ERR: BAD WINDOW

ThetaMin and TMin must be strictly less than ThetaMax and TMax.
You also cannot specify any negative coordinates for these parameters.
These four coordinates cannot extend beyond the boundaries of your
screen. Finally, ThetaMin and ThetaMax can be no less than 24 apart,
and TMin/TMax can be no less than 24 apart.

47

Introduction to
Correlific Mode

As you can see, Correlation provides a wide variety of options for
making a fun and detailed game. But what’s that I hear? You want
faster games? Ok, you can always use Correlific Mode. Correlation has
a built-in game engine that you can supply commands and data to in
order to make a fast game. However, Correlific Mode is a huge topic in
and of its own, so I have provided a separate manual. If you want to use
Correlific Mode to create even better games, take a good look at the
manual, and be aware that you will need some spare RAM on your
calculator for the game engine. And I advice you not to use Correlific
Mode unless you want a really fast game, because although it is easy, it
takes a lot of time and planning to put such a game together.

48

Special Thanks and
List of Testers

SPECIAL THANKS TO THESE PEOPLE FOR MANY DIFFERENT
THINGS, BUT ESPECIALLY THE FOLLOWING (IN NO
PARTICULAR ORDER):

thepenguin77—General parser help, converting BCD to decimal

calc84maniac—Converting BCD to decimal

Sean McLaughlin—Sprite Routines

Iambian, calcdude84se—Guidance on drawing overwritten sprites

Xeda112358, BrandonW, KermM—General parser help

DJ Omnimaga—Countless suggestions and hints that helped make this
a high quality package

Graphmastur—Special hook help, idea for Font Collections

BuckeyeDude—VAT and variable help, general parser help

Deep Thought—Main Programming of the Correlation Font Compiler

Nemo—GUI of the Correlation Font Compiler

Romain Liévin, Tim Singer—Ti-83+ Character Table

Rebma Boss—Idea for Word Wrap Mode

49

AND SPECIAL THANKS TO THE TESTERS:

COMING SOON!

50

Screenshot Credits

COMING SOON!

51

List of Correlation
Commands

COMMAND WHAT IT DOES
1:Asm(pgrmCORELATE Lets you use Correlation with your Ti-

Basic Program
0:Asm(pgrmCORELATE Turns off Correlation so that your

calculator will run normally
int(“MYFONTRT Tells Correlation to display text using the

font found in pgrmMYFONTRT. This
command works with any font compiled
as a program with an 8-character name

ln(X Position, Y Position,
String)

Displays text using a custom 6x8 font.
This command works identically to
Output(.

e^(Y Position, X Position,
String)

Displays text using a custom font of any
size. This command words identically to
Text(.

int(“DD Updates the screen, displaying all text that
you drew

int(“RY Turns on the Run Indicator
int(“RN Turns off the Run Indicator
abs(String, Start Position,
Number Of Characters to
Select

Returns a substring of the string you
specified. This command works
identically to sub(.

int(“WY Tells Correlation that Ws and Ms are
bigger than other letters in your font

int(“WN Tells Correlation that all letters in your
font are the same side

52

List of Advanced
Correlation Commands
int(“M0 Turn on Clip Mode, so that text

stops displaying once the edge of
the calculator’s screen or window
is reached

int(“M1 Turns on Wrap Mode, so that text
moves to the next line once the
edge of the calculator’s screen or
window is reached

int(“M2 Turns on Word Wrap Mode
int(“M3 Turns on Map Mode
int(“FF Tells Correlation that you specified

a new custom window or a new
map width for drawing text

int(“E0 Draws text using OVERWRITE
int(“E1 Draws text using OR
int(“E2 Draws text using XOR
int(“E3 Draws text using AND
int(“E4 Draws text using MASKED
int(“00 – 99 Selects a font from a font

collection
int(“AY Turns on Animated Text
int(“AN Turns off Animated Text
det({Number Of Frames for First
Animation, Number of Frames for
Second Animation…}

Tells Correlation how many frames
are needed for each animation you
create

53

int(“CN Turns Correlation Off, allowing
you to use another asm
library/program such as Xlib,
AppVar or Celtic III

ZoomSto Turns Correlation back on after
using another asm program or
library

int(“EY Tells Correlation to display text
immediately

int(“EN Tells Correlation to avoid display
any text drawn until it encounters
the line int(“DD

int(“BY Tells Correlation to erase a
previously drawn character of text
when you are ready to draw the
same character again. This makes
it look like your character is
moving.

int(“BN Tells Correlation not to erase any
text that was drawn

