T1-83+ Z80 ASM
for the Absolute
Beginner

APPENDI X B:

e Jorites

Appendix B: Sprites

SPRITES

If you don’t know what a sprite is, a sprite isa itnage you can
(and usually will) place anywhere on the screeangtgiven moment.
Unlike pictures, sprites are constantly changirarthosition on the
screen. Some examples of sprites include Maridy\Kiand tiles used to
make a map. (Did you ever see a screen of a Nlotgame that scrolls,
and notice that the map contains a lot of smalasgpieces—Iike a
puzzle—put together? Those pieces are called &l&s since they can
be moved, they are sprites.) Sprites allow yodr&w ships that can fly
across the screen, balls that can bounce up and, &g even monsters
that come from a corner and wreck havoc.

Creating your own sprite routine is an advancedctand so | will
instead give you a sprite routine to use freelpectal thanks goes to
Chris Shappell (Buckeye Dude) and, especially,Bifar this sprite
routine.

To create a sprite, you can do everything you wlickeating a full-
sized picture, with one exception: Before everytepabel, bm_min_w
should come before it and be equal the numberxaipwide your sprite
Is. For instance, a sprite 32 pixels wide: bm_mirs 32

However, there are some things you need to be aatmrat with
sprites. Just like pictures, sprite data consibfiss and 0s. However, if
we let sprites be drawn like a picture, 1s for klpixels and Os for
white pixels, what happens to transparency? Tisemene. So drawing
a sprite will mess up the background with the blacl white pixels that
are drawn.

Now, you can take care of this problem, but youehi@vdecide
how you want to draw your sprite with transparengyu can XOR the

Appendix B: Sprites

sprite, OR it, OVERWRITE it, AND it, or MASK it. Mst of the time,
you will use OR, XOR, or MASK, so the routine | leagiven you will
allow you to draw a sprite using these three method

If you draw a sprite using OR, any 1s will be draasblack
pixels, and Os will be transparent. If you draspate using XOR, Os
will still be transparent. But with XOR, 1s wilivert any pixels
underneath them. If your sprite is a square fullsy and you draw it on
a black background, you will see a white squara biack screen.

If you OVERWRITE a sprite, 1s will be black and\d#l be
white. This, of course, messes up the backgrdouickhere are times
that you might want to do that.

If you AND a sprite, Os will be drawn as white, abglwill be
transparent. This is very useful if you need atgvbprite on a black
background.

What if you want a sprite that has black pixelsitevpixels, AND
transparency? This is where you draw a spriteguisia MASK sprite
routine. To do this, you must create a picturé ih&dlOT monochrome.
Use black ink for black pixels, and white ink fohie pixels, as usual.
But then, color in green all the parts that you iteansparent. If you
are looking at the RGB value, the green shouldtbelleblast (FF or
255), with absolutely no red or blue. Save thidk as a 24-bit
bitmap.

Masked sprites take twice as much data as regptaes. Don't
use them lightly.

n Appendix B: Sprites

Now to introduce you to the routine. This sprieatine allows
you to draw sprites up to 64 x 64 in size, eith@R OR or Masked.
You can place the sprite anywhere on the screeheasn “off” of the
screen if you need to. (This technique is callgghtng. If you ever
need to draw your sprite so that it is partiallf affthe screen, you need

clipping.)

Be aware, however, that this sprite routine isfapprocessor-
intensive games if you need a bunch of little sgritMost games for the
Ti-83+ use 8x8 sprites, and there are plenty a$¢han ticalc.org. This
routine is meant to get you started as a genenglege routine, but if
you are serious about fast games such as Mari&abg, you won't get
very far using just this routine, especially sitt® HUGE (almost 600
bytes!)

With that said, it takes some work to incorporéis toutine into
your ASM program or application. Also, you will tnoe able to
compute statistics in your program with this roatin place. Finally, if
you are writing an application, you will not be alvd use all of
saveSScreen.

To use this sprite routine, make sure that spuames.asm is in
the same folder as all your programming stuff,udahg spasm and the
ASM program itself. Then include inside of youogram all the sprites
you need, each with a label and an #include “bitlmap” statement,
where bitmap is the name of your bitmap file. Retber, before each
sprite, you should include

.option bm_min_w =

with the number of pixels wide the sprite is, UNLE$ou have a
whole bunch of sprites, one after the other, thatlae same size. If, for
example, you have a bunch of sprites 8 pixels Wwid8 pixels high, you

Appendix B: Sprites

only need to type .option bm_min_w = 8 once, wil reach a sprite of
a different width.

You need a label before the start of your prograet’s call it
Routine. After .db t2ByteTok, tAsmCmp, you nebd following
code:

jp Routine
#include "spriteroutines.asm”

Routine;:

If you are writing an AShprogram, type

#define USE_RAM_ROUTINE at the top of the pageydf are writing
an ASMapplication, type RES apdAble,(lY+apdFlags) where your
program starts and SET apdAble,(lY+apdFlags) witerrads.

Now, to display your sprite, IX must be equalhie tabel
pertaining to your sprite. Register B must hole #alue of the height of
your sprite. For register C, take the width of iysprite, divide it by
eight, and round UP to the nearest whole numbEmis(converts your
width in pixels to width in bytes.) Finally, retgs D contains the X
coordinate of where you want to draw the spritel mgister E contains
the Y coordinate of where you want to draw thetspri

Use CALL LargeClippedSpriteOr to draw a sprite gsR. Use
CALL LargeClippedSpriteXor to draw a sprite usin@R.

LargeClippedMaskedSprite will draw a Masked Spiigt, you
need to use IY to hold the Mask. Remember in Ledsbwhen | said

— Appendix B: Sprites

that you have to be careful when using 1Y? Befare use LD IY,
Mask, you need to type in CALL Use_|Y_Safely. Thexe CALL
Return_IY_To_Normal after you draw your sprite.

One more thing about LargeClippedMaskedSprite:gamit use a
label for IY in this case. Take the value you gesgister B, and
multiply it by the value you gave register C. (D@T use B * C in
your program, because that will not work. Instass® the values you
placed in the registers.) This value is, essdwntidie width in bytes of
the sprite times the height. Then add this vabuiaé label you assigned
to IX.

For example, let’s say you have a sprite 32 xS@.if you are
doing everything right, register B contains theueaB2, and register C
contains the value 4. Suppose your sprite ishal [Sprite.

LD lY, 32 * 4 + Sprite

On the next page is an example, which demonstdaéeging a
Sprite as OR, as well as drawing a masked sprit@ve included the
two images you need: “Bird.bomp” and “Tree.bmp.”

Appendix B: Sprites

#include "ti83plus.inc"

.org $9D93
.db t2ByteTok, tAsmCmp

jp Routine
#include "spriteroutines.asm"

Routine:
B_CALL _CIrLCDFull

Id ix, Tree
ldc, 3

Id b, 43
Id e, 20
Idd, 71

call LargeClippedSpriteOr
B_CALL _GrBufCpy
B_CALL getKey

CALL Use_lY_Safely
Id ix, Bird

Id iy, Bird + 128
ldc, 4

Id b, 32

Ide, 1

Id d, 64

call LargeClippedMaskedSprite
CALL Return_lY_To_Normal

B_CALL _GrBufCpy
B_CALL getKey
B_CALL _CIrLCDFull
ret

.option BM_SHD =2
.option bm_min_w =24
Tree:

#include "Tree.bmp"

.option bm_min_w =32

.option bm_msk = TRUE

.option BM_MSK_RGB = $SO0FF00
Bird:

#include "Bird.bmp"

