
 Appendix B: Sprites

 1

TI-83+ Z80 ASM
for the Absolute

Beginner

APPENDIX B:

• Sprites

 Appendix B: Sprites

 2

SPRITES
If you don’t know what a sprite is, a sprite is a 2D image you can

(and usually will) place anywhere on the screen at any given moment.
Unlike pictures, sprites are constantly changing their position on the
screen. Some examples of sprites include Mario, Kirby, and tiles used to
make a map. (Did you ever see a screen of a Nintendo game that scrolls,
and notice that the map contains a lot of small square pieces—like a
puzzle—put together? Those pieces are called tiles, and since they can
be moved, they are sprites.) Sprites allow you to draw ships that can fly
across the screen, balls that can bounce up and down, and even monsters
that come from a corner and wreck havoc.

Creating your own sprite routine is an advanced topic, and so I will
instead give you a sprite routine to use freely. Special thanks goes to
Chris Shappell (Buckeye Dude) and, especially, Jim E for this sprite
routine.

To create a sprite, you can do everything you did in creating a full-
sized picture, with one exception: Before every sprite label, bm_min_w
should come before it and be equal the number of pixels wide your sprite
is. For instance, a sprite 32 pixels wide: bm_min_w = 32

However, there are some things you need to be aware about with
sprites. Just like pictures, sprite data consists of 1s and 0s. However, if
we let sprites be drawn like a picture, 1s for black pixels and 0s for
white pixels, what happens to transparency? There is none. So drawing
a sprite will mess up the background with the black and white pixels that
are drawn.

Now, you can take care of this problem, but you have to decide
how you want to draw your sprite with transparency. You can XOR the

 Appendix B: Sprites

 3

sprite, OR it, OVERWRITE it, AND it, or MASK it. Most of the time,
you will use OR, XOR, or MASK, so the routine I have given you will
allow you to draw a sprite using these three methods.

If you draw a sprite using OR, any 1s will be drawn as black
pixels, and 0s will be transparent. If you draw a sprite using XOR, 0s
will still be transparent. But with XOR, 1s will invert any pixels
underneath them. If your sprite is a square full of 1s, and you draw it on
a black background, you will see a white square on a black screen.

If you OVERWRITE a sprite, 1s will be black and 0s will be
white. This, of course, messes up the background, but there are times
that you might want to do that.

If you AND a sprite, 0s will be drawn as white, and 1s will be
transparent. This is very useful if you need a white sprite on a black
background.

What if you want a sprite that has black pixels, white pixels, AND
transparency? This is where you draw a sprite using the MASK sprite
routine. To do this, you must create a picture that is NOT monochrome.
Use black ink for black pixels, and white ink for white pixels, as usual.
But then, color in green all the parts that you want transparent. If you
are looking at the RGB value, the green should be at full blast (FF or
255), with absolutely no red or blue. Save this picture as a 24-bit
bitmap.

 Masked sprites take twice as much data as regular sprites. Don’t
use them lightly.

 Appendix B: Sprites

 4

 Now to introduce you to the routine. This sprite routine allows
you to draw sprites up to 64 x 64 in size, either XOR, OR or Masked.
You can place the sprite anywhere on the screen, and even “off” of the
screen if you need to. (This technique is called clipping. If you ever
need to draw your sprite so that it is partially off of the screen, you need
clipping.)

Be aware, however, that this sprite routine is not for processor-
intensive games if you need a bunch of little sprites. Most games for the
Ti-83+ use 8x8 sprites, and there are plenty of those on ticalc.org. This
routine is meant to get you started as a general-purpose routine, but if
you are serious about fast games such as Mario and Kirby, you won’t get
very far using just this routine, especially since it’s HUGE (almost 600
bytes!)

With that said, it takes some work to incorporate this routine into
your ASM program or application. Also, you will not be able to
compute statistics in your program with this routine in place. Finally, if
you are writing an application, you will not be able to use all of
saveSScreen.

To use this sprite routine, make sure that spriteroutines.asm is in
the same folder as all your programming stuff, including spasm and the
ASM program itself. Then include inside of your program all the sprites
you need, each with a label and an #include “bitmap.bmp” statement,
where bitmap is the name of your bitmap file. Remember, before each
sprite, you should include

.option bm_min_w =

with the number of pixels wide the sprite is, UNLESS you have a
whole bunch of sprites, one after the other, that are the same size. If, for
example, you have a bunch of sprites 8 pixels wide by 8 pixels high, you

 Appendix B: Sprites

 5

only need to type .option bm_min_w = 8 once, until you reach a sprite of
a different width.

You need a label before the start of your program. Let’s call it
Routine. After .db t2ByteTok, tAsmCmp, you need the following
code:

jp Routine

#include "spriteroutines.asm"

Routine:

 If you are writing an ASM program, type

#define USE_RAM_ROUTINE at the top of the page. If you are writing
an ASM application, type RES apdAble,(IY+apdFlags) where your
program starts and SET apdAble,(IY+apdFlags) where it ends.

 Now, to display your sprite, IX must be equal to the label
pertaining to your sprite. Register B must hold the value of the height of
your sprite. For register C, take the width of your sprite, divide it by
eight, and round UP to the nearest whole number. (This converts your
width in pixels to width in bytes.) Finally, register D contains the X
coordinate of where you want to draw the sprite, and register E contains
the Y coordinate of where you want to draw the sprite.

Use CALL LargeClippedSpriteOr to draw a sprite using OR. Use
CALL LargeClippedSpriteXor to draw a sprite using XOR.

LargeClippedMaskedSprite will draw a Masked Sprite, but you
need to use IY to hold the Mask. Remember in Lesson 13 when I said

 Appendix B: Sprites

 6

that you have to be careful when using IY? Before you use LD IY,
Mask, you need to type in CALL Use_IY_Safely. Then use CALL
Return_IY_To_Normal after you draw your sprite.

One more thing about LargeClippedMaskedSprite: you can’t use a
label for IY in this case. Take the value you gave register B, and
multiply it by the value you gave register C. (DO NOT use B * C in
your program, because that will not work. Instead, use the values you
placed in the registers.) This value is, essentially, the width in bytes of
the sprite times the height. Then add this value to the label you assigned
to IX.

For example, let’s say you have a sprite 32 x 32. So if you are
doing everything right, register B contains the value 32, and register C
contains the value 4. Suppose your sprite is at label Sprite.

LD IY, 32 * 4 + Sprite

On the next page is an example, which demonstrates drawing a
Sprite as OR, as well as drawing a masked sprite. I have included the
two images you need: “Bird.bmp” and “Tree.bmp.”

 Appendix B: Sprites

 7

#include "ti83plus.inc"

.org $9D93

.db t2ByteTok, tAsmCmp

 jp Routine

#include "spriteroutines.asm"

Routine:

 B_CALL _ClrLCDFull

 ld ix, Tree

 ld c, 3

 ld b, 43

 ld e, 20

 ld d, 71

 call LargeClippedSpriteOr

 B_CALL _GrBufCpy

 B_CALL _getKey

 CALL Use_IY_Safely

 ld ix, Bird

 ld iy, Bird + 128

 ld c, 4

 ld b, 32

 ld e, 1

 ld d, 64

 call LargeClippedMaskedSprite

 CALL Return_IY_To_Normal

 B_CALL _GrBufCpy

 B_CALL _getKey

 B_CALL _ClrLCDFull

 ret

.option BM_SHD = 2

.option bm_min_w = 24

Tree:

#include "Tree.bmp"

.option bm_min_w = 32

.option bm_msk = TRUE

.option BM_MSK_RGB = $00FF00

Bird:

#include "Bird.bmp"

