T1-83+ Z80 ASV
for the Absolute
Beginner

APPENDI X A:

 Creating Flash Applications with
SPASM

Appendix A: Creating Flash Applications with SPASM

CREATING FLASH APPLICATIONS
WITH SPASM

| assume that as a Ti-83+ user, you know what ahcghion
Is. And the nice thing about an application is) yan write very
long ASM programs. As you probably know, a norl&M
program cannot be bigger than 8 kilobytes, butmplieation can
be as large as your calculator archive will allow.

However, you need to be aware that applicationsadaoun
from RAM. They run from ROM. Furthermore, theaahtor
needs to know that your ASM program is actuallyapplication.
So we have some adjustments to make your program an
application.

Please do not try to run any applications you ereatil read
this entire lesson. There are some things you oamitth an ASM
program that you cannot do with an application, laneed to tell
you what those are.

To create a Ti-83+ application, you need a speccilide
file that | have provided. Do you remember how wbuays
needed to type #include “ti83plus.inc” at the begug of all your
ASM programs? After that, you need to type #ineltiapp.inc” if
you are creating an application. And just likehatiB3plus.inc,
make sure you have app.inc in the same folder asASM
application.

#include “ti83plus.inc”

#include “app.inc”

Appendix A: Creating Flash Applications with SPASM

Now you need to decide whether you want a multiepag
application or a single-page application. Mosthaf time, you'll
want to write a single-page application, which pdeg you with a
maximum size of 16KB. But if you want to write ary big
application, you will need more than one page. ptiat I'm
coming to is, you will need at least one .asmfbleevery page of
the application that you write.

So let's say we are writing a single-page applocgtivith
one page. Thisis callgthge O (So the second page is page 1, the
third page is page 2, etc.) After #include “app.itype in the
following:

defpage(0, The Name of Your Application In Quotes)

SPASM now knows that this file is page zero of your
application. In this case, page zero is our oalyed

The name of your application can be no longer than
characters. For example,

defpage(0, “Hello”)
defpage(0, “TestASM”)
defpage(0, “PlayGame”)

The very, very last line of your application shobklthe
following: validate() Also, take out the .org $9®line and the
.db t2ByteTok, tAsmCmp line. These are useq &l ASM
programs, not applications.

n Appendix A: Creating Flash Applications with SPASM

When you build your application with SPASM, DO NOT
type .8xp at the end of your program name. Instgge .8xk at
the end.

That's all there is to it! You now have a one-page
application. However, there’s a bit more work itwenl when you
want to create a multiple-page application.

First of all, recall that you should have one .dd&tfor every
page your application requires. Then you needcdtude these
files by typing #include before validate().

Let’'s say you have a very big application that rezgi3
pages (48 KB). So you need three files. One s yoain
program, the first page, page 0. We’ll call it pagro.asm. Let’s
say your second file is called pageone.asm andtyakfile is
called pagetwo.asm. On pagezero.asm, before v&({)dsou
should have the following:

#include “pageone.asm”

#include “pagetwo.asm”

For pageone.asm, at the top, you need the lineadefp).
For pagetwo.asm, at the top, you need the lineadef(2).

When SPASM compiles your application, anything you
typed on pageone.asm will go into page 1, the sepage of your
application. Anything you typed on pagetwo.asn gal into page
2, the third page of your application.

Now, the thing you need to be aware othg Ti-83+ can
only run one page at a time, starting with page zex. If you

Appendix A: Creating Flash Applications with SPASM

need to run some code on another page, you nesdtth pages.
If your Ti-83+ is running some code on page 0 amd eed it to
run code on page 2, you need to switch to pagey®uf
application. Again, if the Ti-83+ is running code page 1, it will
not run code from page O until it switches to p@ge

The good news is that the calculator handles alptmge
switching. The bad news is that the calculatorsdus know
which page to switch or WHEN to switch it. You leaw tell it
where to go. Your application will need what'’s edllabranch
table. The branch table is where you put labels thatryeed to
access on a page DIFFERENT from the page you are on

Let’'s say you have Label Draw_Picture, on page Yoot
application. If you need to CALL it, JR it, or &from page O,
and ONLY from page O, yodo not need to place it in the branch
table. However, if you need to access Label Dragtufe from
another page of your application, you do need tatpa the
branch table.

Likewise, suppose Label Draw_Picture is on pagéy®or
application. If you CALL it, JP it or JR it fromage O, 1, 2, 4, 5,
etc., you need to place this in the branch talile.

Label Draw_Picture is ONLY used on page 3, you dioneed to
put it in the branch table.

So, what is this—branch table, and where do watput
Well, this branch table needs to be before allafrycode. At the
place where your code actually starts, type indbel Start

Start:

n Appendix A: Creating Flash Applications with SPASM

Then, before all your code, type in the following:

jp Start ;Goes to the start of your code

.db 0

Now, this is where you tell your calculator whelietlze
labels are, the labels that you need to CALL, JPRofrom
different pages. All this information should gddre the label
Start. For every label you need to access on pheliages, you
type in the following:

.dw Label Name

.db Page Number

Suppose you have a label on your second page called
Access_Sprite_Data, and you need to call it frommr fwst page.
Remember, your first page is called page 0, and yecond page
Is called page 1.

.dw Access_Sprite_Data ;The label

.db 1 ;The page the label is on

Appendix A: Creating Flash Applications with SPASM

Now, let's say you have a timer function on youndth
application page, page 2.

.dw Adjust_Timer
.db 2

So remember, your branch table should include ONibéls
that are accessed from pages that they are nat afpdf you
have a label on page 0 that only page O uses, ot geed to put
it in the branch table.

Now we have our branch table with all the labe& the
application needs to access from separate pagssthd
calculator is stupid...it doesn’t know that the diatthere! So we
need to tell the calculator where to find this data

For every label in the branch table, come up witiicaname.
| usually create nicknames by placing “ " beforelekabel in the
branch table. For example, _Adjust_Timer and
_Access_Sprite_Data.

For each label in the branch table (going in tleeoyou
typed the labels in), type in your nickname fort ladel, then .equ,
then the following formula:

(43 + (1 if the nickname pertains to the first labethe table,
2 if the label pertains to the second label inkdfench table, 3 if
the label pertains to the third label in the bratadiie, etc.)) * 3.

_Access_Sprite_Data .equ 44 * 3
_Adjust_Timer .equ 45 * 3

n Appendix A: Creating Flash Applications with SPASM

That's all there is to it. The calculator now kreoan which
pages all the labels are located. However, yonatamse CALL,
JR or JP to access these labels that are on diffpages, unless
your application is running the page the labelns ¥ou use
B_CALL nickname to CALL a label on another pagej &ou use
bjump(nickname) to JP to a label on another page.

Since Access_Sprite_Data is on page 1 of your egujbin,
you use B_CALL Access_Sprite_Data when you arpawge O.
If you are on page 1, you can use CALL Access_&pata, and
you don’t need to use the nickname in this case.

Wow, so now you can create single and multiple-page
applications. But remember, applications can oatyfrom ROM.
That means anything that requires RAM in an ASMgpam
CANNOT be used for an application.

So, you can’t use variables! At least not normaNpou
can’t, for instance, say:

Number_Of Bananas:

.db 99

Instead, variables must be stored directly incddeulator’s
RAM, for instance in appbackupscreen. (Refer $sd@ if
you need to.)

‘ Appendix A: Creating Flash Applications with SPASM

And then a biggy...when you use routines to dispéay,
your text needs to be located in RAM. So you catonger say
the following:

LD HL, Text
B CALL PutS

You need to copy the string to RAM, and THEN digpit.
We will use appbackupscreen to hold the area wiverazant our
string copied.

TextBuffer .equ appbackupscreen + 100

LD HL, Text

LD DE, TextBuffer
B _CALL _StrCopy
LD HL, TextBuffer
B _CALL PutS

So just remember that applications require ROM, taynnot
to include code that requires the application tesraound with
itself as if it were in RAM.

