T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON ELEVEN:

e ASM Gorillas, Part I11: The Menus

Lesson Eleven: ASM Gorillas—The Menus

ASM GORILLAS, PART I1l: THE MENUS

Now that you have learned how to display textyvalf as how to
work with some two-byte registers, let's work oe thenu system for
ASM Gorillas.

The approach we will take is to have one routindisplay text for
the menus. Depending on the data received, the moerine will
display particular text for a particular menu. lBving a flexible
routine of this kind, we can display as many mesmsus/e want, where
the only cost in storage space is the number oushare have. In other
words, we don’t have to use storage space by puttenu code in for
each menu we want to display.

We are not going to display menus on the maingesden.
Rather, we are going to use the graph screen, mgara will use small
text. Believe it or not, while there is definitedydifference between
“Big Text” and “Small Text”, you can almost alwagransition from one
set of functions to the other by remembering omly simple rules of
thumb:

1. To use a “Big Text” function to display small teatways place a
“V” before the respective function. For instangey can
transition from _PutS for big text to displayingatriext via the
B_CALL function “_VPutS.”

2. Instead of curCol and curRow, use penCol and pen&otext
coordinates. In this case, since the Ti-83+ gisgwhen consists of
96 columns and 64 rows, penCol can be a value @r¢on95, and
penRow can be a value from O to 63.

Lesson Eleven: ASM Gorillas—The Menus

Before we continue, however, be aware that thexesame
changes we will need to make to our previous cedgeprogress. The
truth is, as | was working on this program, | fouhdt | had to add some
lines of code, change some lines, and even renwwe $nes. But
rather than make these changes in thegson, | decided to let you
make the changes during the course of the progragsassion, as |
had to do. It's just a good chance to practice.

To display menus, we’re going to use a differemqtrapch than
VPutS. VPutS, like PutS, calls for a string thadl® in a zero so the
calculator knows how big the string is. We’re gpto use a different
function, called VPutSN.

B_CALL _VPutSN

Displays a string specified by HL. The string does notend in a
zero. Instead, the number of characters to display is stored in

register B.
Examples: LD HL, String
LD B, 11

B_CALL PutS

String:
.db “Hello World”

‘ Lesson Eleven: ASM Gorillas—The Menus

The reason we're using VPutSN is for a flexible meoutine.
Rather than having to calculate the menu lengthgarehave it specified
manually.

Let’s start by typing in the data we’ll need foetimenus, in term
of text data. For the Main Menu, we will have faytions: New Game,
Load Game, Options and Quit. The Settings Menuhawe options for
Gravity, Wind Speed, # of Rounds (this is new), Badk. The Players
Menu, formally called the Names Menu, will haveiops for Player
One, Player Two, and Back. The Al/Human Menu, faliyncalled the
Players Menu, will have options for Player vs. Alyo Players, or Back.
Finally, we will have a new menu, Al Difficulty: Eg, Medium, Hard,
Crazy, and Back.

In front of each menu option, we’ll have a numipartaining to
the number of characters the line of text for treamoption has. Go to
ASMGorillasMain.asm and type in #include “ASMGaasiData.asm”
beneath your other include lines. In additionateea new file,
ASMGoaorillasData.asm. In this new file, type in tth&a on the next

page.

Lesson Eleven: ASM Gorillas—The Menus

Main_Menu_Text:

.db 8, "New Game"
.db 9, "Load Game"
.db 7, "Options"

.db 4, "Quit"

Settings_Menu_Text:

.db 7, "Gravity"

.db 10, "Wind Speed"
.db 11, "# of Rounds"
.db 4, "Back"

Players_Menu_Text:
.db 10, "Player One"

.db 10, "Player Two"
.db 4, "Back"

Al_Or_Human_Menu_Text:
.db 13, "Player vs. Al"

.db 11, "Two Players"
.db 4, "Back"

Al_Difficulty_Menu_Text:

.db 7, "Easy Al"
.db 9, "Medium Al"
.db 7, "Hard AI"
.db 8,"Crazy Al"
.db 4, "Back"

n Lesson Eleven: ASM Gorillas—The Menus

You will notice that this is the text for the fimeenus we will have.
However, if you look at the data in ASMGorillasCtarsts.asm, we have
some inconsistencies. We will need to change tteesegke this
program work. The final file will be on the nexage so you can make
sure you did everything right, but make whatevergjes you can
understand so that you can see for yourself wigatisg on.

First of all, we have to change some menu naméange
Players_Menu to Al_Or_Human_Menu, change Names_Nenu
Players Menu, and add Al_Difficulty Menu .equ 4or Eonsistency of
order, let Players_Menu equal 3, and let Al_Or_HuanMenu equal 4.
Also, change these names in the respective “ltamsstants...for
instance, change Names_Menu_Items to Players Mems.| Finally,
add the following line: “Al_Difficulty_Menu_Itemsqu 5”

Something else | hoped you noticed. For eachettnstants
pertaining to the number of items (with the womrehis at the end of its
name), the number after .equ is supposed to beuimder of items the
menu has. Some of these are incorrect. For iostamou will notice
that the Settings Menu has 4 items now, insted8l dhange that.
Now, let Player Menu_Items be equal to 3 (don'taisenstant for this
like we did in the previous text file), and let Z&r Human_Menu be
equal to 3.

Finally, let's change where our menu is displayédter running
the program, | found that when I displayed the g = 11, the text
was too far to the right. So change MainMenultentd ¥qual 8.

Lesson Eleven: ASM Gorillas—The Menus

MainMenultem1X .equ 8

MainMenultem1Y .equ 14

Main_Menu .equ 0
Settings_Menu .equl
Al_Or_Human_Menu .equ 2
Players_Menu .equ 3

Al_Difficulty_Menu .equ 4

Main_Menu_ltems .equ 4
Settings_Menu_ltems .equ 4
Players_Menu_Items .equ 3

Al_Or_Human_Menu_ltems .equ 3

Al_Difficulty_Menu_ltems .equ 5

PlayerlINameX .
PlayerlNameY .
Player2NameX .
Player2NameY .
PlayerlScoreX .
PlayerlScoreY .
Player2ScoreX .

Player2ScoreY .

LoadingTextX .equ 3

LoadingTextY .equ 3

n Lesson Eleven: ASM Gorillas—The Menus

Let’s work on the routine to display the menul dive you the
code line by line, and explain it on the way. @eemnew text file called
“ASMGorillasStartProgram.asm”, and include this in
“ASMGorillasMain.asm.”

hl is the | ocation of the nenu text
b is the nunber of itens the nenu has

;d contains the X position, the colum to
di splay the text at.

;e contains the Y position, the row to display
the text at.

These are four comments that describe what happéhs
subroutine. It is very important to include comrsein your program so
that you, and the reader of your code, can undeigeand more
importantly, REMEMBER) what in the world is happegiin your code.

These comments tell you, and remind you, what texgsre
needed to display a menu. Remember how you useduse the line
B_CALL PutS? This is similar; to use the menutiroe; you need
registers hl, b, and de.

Remember that d and e can be put together. Ipyba and e
together, de contains both the X position and thgo3ition. This is not
important for this menu routine, but it is importém remember.

n Lesson Eleven: ASM Gorillas—The Menus

Di spl ay_Text Menu:

The reason that we have this label here is thdooge several
times in this menu routine to display text. Evenye we display one
line of text, we need to loop back here. The labkd us where the
beginning of the loop is.

ld a, e

| d (penRow), a

Since register e contains the Y position, the Rowisplay our
text out, we need to store it in penRow. Justaimder that this is one
of the ways to store values in RAM.

ld a, d
| d (penCol), a

Stores d, which contains the X position, into peinCo

ldc, b ' Save the nunber of nenu itens

;left to display

Lesson Eleven: ASM Gorillas—The Menus

As the comment states, we need to save the nurmhbegru items
left to display. We need register B to use B_ CAINYPutSN, so we
don’t want to lose our value in register B thathveal stored there before.

Id b, (hl)

From our parameters in the first four commentswfmogram, we
understand that hl contains the location of ourument. If you look
back at our “ASMGorillasData.asm” text file, youlMgee that the first
value is a number, the number of characters itirleeof text you want
to display. Since register B needs to hold thisedor VPutSN, we
store this value.

As an example, suppose that hl was equal to MaimuM€ext.
Then register B will contain the value 8, and as gan see, “New
Game” contains 8 characters.

I nc hl

Our first value in hl, as previously stated, penta to the number
of characters in the line of text. Now we wantdpoint to the line of
text. By increasing hl by one, hl now equals the bf text. In our
previous example, for instance, (hl) was at ficpta to 8. After inc hl,
(hl) is equal to “N”. Thus hl now points where dakt starts. (In other
words, HL is now equal to Main_Menu_Text + 1, wheug string
starts) Recall that B_. CALL _VPutSN requires hl #othe location of
the string.

Lesson Eleven: ASM Gorillas—The Menus

B_CALL _VPut SN

Displays our string in small text, at the X and &5sftion we
specified. By the way, after we run the routinedPWwSN, hl will point
to the number of characters that the next lineexff tontains.

ld a, e ; Myve the line of text to the next
; I OW

add a, 7

ld e, a

We now need to store a new value for Y so thatavedisplay the
next line of text correctly. If we don’t specifyn@w row, we’ll end up
displaying text on the same row we did before, @ntl have a
collision. This means that our menu will displagarrectly. Here's a
screenshot with an example of what happens whehetext is
accidentally displayed at the same Y coordinate:

Lesson Eleven: ASM Gorillas—The Menus

As a good rule of thumb, any line of small textwatapital letters
has a maximum height, in pixels, of six. Therefdoeavoid squeezing
lines of text on top of each other as in the presiscreenshot, you need
at least six pixels for each line of text. In ttese of our menu, we also
want one pixel of blank space to provide additiawaim so that people
can read the menu easily. Compare the two scresn.sThe first is
when we advance the row six pixels, and the seowthen we advance
the row seven pixels.

Afterwords, register E contains our new Y position.

ld b, c
dj nz Di splay_ Text Menu

ret

Now that we no longer need register B to hold theber of
characters in our string, we put back the numbdoafs left, the
number of lines left to display. Since this vahsel temporarily been
stored in register C, we put it back in register B.

Lesson Eleven: ASM Gorillas—The Menus

After that, we decrease B by one. If it equal®ztrere are no
more lines of text left to display. In that case, exit the subprogram.

Now, add the following code to your program. Téasle should
come before “Display_Text Menu.” Comments will &ip everything.
Don’t run the program yet.

B_CALL _CIrLCDFull

Id d, MainMenultem1X ; Stores the X position for the menu

Id e, MainMenultem1Y ; Stores the starting Y position for the menu

Id a, Main_Menu ; For right now, use register A to select a menu to test.
; By letting register A be the value of a different menu,

; you can test them. For example, try Id a, Settings_Menu

cp Main_Menu

jr z, Display_Main_Menu

cp Settings_Menu

jr z, Display_Settings_Menu

cp Al_Or_Human_Menu

jr z, Display_Al_Or_Human_Menu
cp Players_Menu

jr z, Display_Players_Menu

cp Al_Difficulty _Menu

jr z, Display_Al_Difficulty_Menu

Display_Main_Menu:

Id hl, Main_Menu_Text ; The values we need to run the routine

; Display_Text_Menu

Id b, Main_Menu_Items

jr Continue_To_Display_Menu ; Continued on Next Page

Lesson Eleven: ASM Gorillas—The Menus

Display_Settings_Menu:

Id hl, Settings_Menu_Text

Id b, Settings_Menu_Items

jr Continue_To_Display_Menu

Display_Al_Or_Human_Menu:

Id hl, Al_Or_Human_Menu_Text

Id b, Al_Or_Human_Menu_ltems

jr Continue_To_Display_Menu

Display_Players_Menu:

Id hl, Players_Menu_Text

Id b, Players_Menu_ltems

jr Continue_To_Display_Menu

Display_AIl_Difficulty Menu:

Id hl, Al_Difficulty_Menu_Text

Id b, Al_Difficulty_Menu_Items

jr Continue_To_Display_Menu

; Code continued on next page

153 Lesson Eleven: ASM Gorillas—The Menus

Continue_To_Display_Menu:

call Display_Text_Menu

B_CALL _getKey
B_CALL _CIrLCDFull

ret

DON'T run the program yet. There’s an importambg¢hyou need
to know about #include files. SPASM will compilewr include files in
the order you specify them. So if you have th&feing:

#include “ASMGorillasData.asm”
#include “ASMGoaorillasStartProgram.asm”

Your program will compile the data first, and tHetart Program,
IN THAT ORDER. That means the program will ruUN THAT
ORDER. So when you run the program, it will start byirigyto run
data. Does that sound ridiculous? Running détta®ridiculous. A
program can't run “data.” So then your prograradtrio run ridiculous
nonsense, and the calculator will crash.

Therefore, it is important that you compile inahadfiles so that
the file you want run first will be compiled firstHowever, ti83plus.inc
MUST be the first include file.

Open “ASMGorillasMain.asm” and make sure thatftrst few
lines are equal to the following on the next page.

16

Lesson Eleven: ASM Gorillas—The Menus

.org 40339

.db t2ByteTok, tAsmCmp

#include "ti83plus.inc"

#include "ASMGorillasStartProgram.asm”

#include "ASMGorillasConstants.asm"

#include "ASMGorillasData.asm"

Now you can run your program safely. Be sureydaifferent
values for register A to try out the different menu

Notice after using the program that the menusocdy display.
You can’t select anything from them! Annoying?r&uBut we’ll start
taking care of that next lesson.

