
 Appendix C: Working Directly With The Keypad 1

TI-83+ Z80 ASM
for the Absolute

Beginner

APPENDIX C:

• Working Directly With the Keypad

 Appendix C: Working Directly With The Keypad 2

WORKING DIRECTLY WITH THE
KEYPAD

This is it! The third method for detecting key presses, the method
that teased your brain from lesson ______. You desperately wanted to
know how to detect multiple keys at once, as well as how to get an
action to continue as long as the key is held down. And now you can
read about how to do it!

But be aware, you don’t use any B_CALLs for this process. You
will instead be working directly with the calculator’s hardware. Hard?
No. But it does require some explanation about ports.

The Z80 processor (which your Ti-83+ uses) is designed to work
with all sorts of hardware. Your Ti-83+ is not the only device to use the
processor. Other calculators use it, Nintendo Game Boys use it, and
even some old computers use it!

And as you can imagine, the Z80 processor can’t possibly have
instructions to work with every single device it’s used for. It does not
have instructions specifically to print a picture from a printer, or to turn
a computer off, or to detect whether a mouse is moving right or left.
But, the processor IS able to send and receive data to and from such
hardware.

Think of it as using the link port to connect two calculators
together with a cable. You cannot use your calculator to turn off the
other player’s calculator, nor can you draw a picture on the other
person’s screen using your own calculator. But you can send data to
your friend’s calculator, and receive data from his calculator.

 Appendix C: Working Directly With The Keypad 3

Each hardware device has some kind of port that the Z80
processor accesses to send data to the device and receive data from the
device. Two things can happen with the port.

One, the Z80 processor sends data through the port to the
hardware, and the hardware uses that data to decide what to do. For
example, when you draw a picture on the screen and use B_CALL
_GrBufCpy, the processor sends picture data through the screen’s port to
the screen itself. The screen, as hardware, will read that picture data,
and then say to itself “Oh, here’s some picture data I need to display.
Since the processor doesn’t know how to do it, I will do it myself.”

The other thing that happens is you can tell the processor to READ
data from a particular port. Then you can tell the calculator what to do
depending on what data the processor reads. In this case, we are going
to read data from the keyboard port, and the data will tell us which keys
are being pressed.

Every port has a number, and the keyboard port on the Ti-83+ is
port 1. So to read data from the Ti-83+ keyboard, we read from port 1.
To send data, we send it through port 1.

There are several instructions for sending and receiving data via
ports, but we will only concern ourselves with 2 of them: IN and OUT.
As you might expect, IN reads data through a port, and OUT sends data
through a port to a hardware device.

 Appendix C: Working Directly With The Keypad 4

IN One-Byte Register, (C)

Register C must contain the port number you want to read data

from. This instruction will read a byte of data from the port

number, and place it inside of a One-Byte Register. In this case,

One-Byte Register CANNOT be (HL).

 Examples: LD C, 1

IN E, (C)

T-States: 12 Byte Storage: 2

IN A, (One-Byte Value)

One-Byte Value is the port number you want to read data from.

This instruction will read a byte of data from the port number,

and place it inside of register A.

 Examples: IN A, (1)

T-States: 11 Byte Storage: 2

 Appendix C: Working Directly With The Keypad 5

OUT (C), One-Byte Register

Register C must contain the port number you want to send data

through. This instruction will send a byte of data from the

register of your choice through the port pointed to by Register C.

In this case, One-Byte Register CANNOT be (HL).

 Examples: LD C, 1

OUT (C), H

T-States: 12 Byte Storage: 2

OUT (One-Byte Value), A

One-Byte Value is the port number you want to send data

through. This instruction will send a byte of data from register A

through the port.

 Examples: OUT (1), A

T-States: 11 Byte Storage: 2

 Appendix C: Working Directly With The Keypad 6

 So now that you understand that the Z80 uses port 1 to send and
read data concerning the keyboard, I’ll teach you how to work with this.
Remember, when the Z80 sends data through the port, the keyboard
hardware of the Ti-83+ takes this and decides what to do based on the
data it received. When the Z80 receives data from the keyboard
hardware, you can tell the Z80 what to do depending on the data it reads.

 On the Ti-83+, the keys are divided into several different groups.
When we want to see if certain keys have been pressed, we tell the Ti-
83+ to check the group (or groups) to see if a key is being held down.
Here are the different key groups:

Group1 = $0fe
KDown
KLeft
KRight
KUp

Group2 = $0fd
KEnter
KPlus
KMinus
KMul
KDiv
KPower
KClear

Group3 = $0fb
kMinus2
kThree
kSix
kNine
kRbracket
kTan
kVars

Group4 = $0f7
KPoint
KTwo
KFive
KEight
KLbracket
KCos
KPrgm
KStat

Group5 = $0ef
KZero
KOne
KFour
KSeven
KComma
KSin
KApps
KGraphvar

Group6 = $0df
KSto
KLn
KLog
kX2
kX-1
kMath
kAlpha

Group7 .= $0bf
KGraph
KTrace
KZoom
KWindow
KY=
k2nd
kMode
kDel

 Appendix C: Working Directly With The Keypad 7

 So to tell the Ti-83+ to check a certain group for keys being
pressed, store into A the hexadecimal value of that group. (Remember
that the dollar signs signify a hexadecimal number.) Then send it via
OUT. For example, suppose we want the calculator to see which of the
arrow keys have been pressed.

 LD A, $FE ; The group of keys pertaining to the arrow keys

 OUT (1), A ; Keyboard Port is Port #1

 However, before you ask the Ti-83+ to check a key group, you
MUST tell the calculator that it’s time to check a key group. To do this,
send the value $FF through the port. This needs to be done every time
you want to check a key group.

 LD A, $FF

 OUT (1), A

 After this, you need to give the port time to rest itself. NOP is a
Z80 instruction that tells the calculator to do absolutely nothing for 4 T-
States. You need two NOPs every time you tell the calculator to read a
key group.

 So on the next page, I’ve listed what we have so far in terms of
reading arrow keys.

 Appendix C: Working Directly With The Keypad 8

 LD A, $FF

 OUT (1), A

 LD A, $FE

 OUT (1), A

 NOP

 NOP

 By now, the Ti-83+ has scanned the arrow-keys group to see
which ones have been pressed. Every key uses 1 bit of data. The bit for
a key will equal 0 if the key is being pressed, and it will equal 1 if the
key is not being pressed. By using the instruction IN A, (1), register A
will hold the value of all the bits put together: 1 bit for each key.

 Now here’s what’s important: As you know, there’s 8 bits in every
byte. If you take a byte and convert it to binary (which gives you 8 bits),
the 1 or 0 on the far right will be Bit 0. The 1 or 0 on the far left will be
Bit 7.

 Bit #7, 6, 5, 4, 3, 2, 1, 0

% 1 1 0 1 1 1 0 0

 On the table on page 6, in every key group, the keys are listed in
order. The first key in the list for every group pertains to BIT 0. The
second key in the list for every group pertains to BIT 1.

 So let’s say you used IN A, (1). Register A will tell you which
keys have been pressed—in this case, the keys from Group 1, the arrow

 Appendix C: Working Directly With The Keypad 9

keys. If only the down key is being pressed, A will equal %11111110.
If all four arrow keys are being pressed, A will equal %11110000. If the
left and up keys are being pressed, A will equal %11110101. If NO
arrow keys are being pressed, A will equal %11111111.

The instruction BIT ______, A will set the Z flag if the bit equals
0, and reset the Z flag if the bit equals 1. (In the blank, place a number
from 0 to 7, where 7 is bit 7 and 0 is bit 0.)

 ld a, $FF
 out (1), a
 ld a, $FE
 out (1), a
 nop
 nop

 in a, (1)

 BIT 0, A
 CALL z, Key_Down_Has_Been_Pressed

; The reason CALL is used is, in this case, we want to see if both down and left have been
; pressed. By CALLing Key_Down_Has_Been_Pressed, the code will eventually return
; here, and we can test for the left key.

 BIT 1, A
 jr z, Key_Left_Has_Been_Pressed

 BIT 2, A
 jr nz, Key_Right_Has_NOT_Been_Pressed

 Appendix C: Working Directly With The Keypad 10

 Now, remember, you need the top seven lines of the red box for
every key group you want to read. Group $FE only applies to the arrow
keys, so you need to use different values for different groups. Refer to
page 6.

 And now, you can check multiple key presses, as well as have
something happen as long as the key is held down (no pauses)! The next
example program, courtesy of Sean McLaughlin, will demonstrate this.
The program test for two or more arrow keys being pressed, and the text
will always, always move when you hold a key down, until the text
reaches the edge of the screen. This example makes use of using
Register C for ports, and using BIT for register B instead of register A.
The program takes three pages of this lesson, by the way.

#include "ti83plus.inc"
.org $9D93
.db t2ByteTok, tAsmCmp

 B_CALL _RunIndicOff
 LD HL, $1C23
 LD (x_pos), HL

DispText:
 B_CALL _ClrLCDFull
 LD HL, (x_pos)
 LD (penCol), HL
 LD HL, string
 B_CALL _VPutS
 LD C, 1 ; Port 1 is the keyboard port

InKey:

 LD A, $FF
 OUT (C), A
 LD A, $BF
 OUT (C), A
 NOP
 NOP
 IN A, (C)

 BIT 7, A
 JR NZ, Check_Arrow_Keys
 LD A, $FF ; Reset key port
 OUT (C), A
 RET

 Appendix C: Working Directly With The Keypad 11

Check_Arrow_Keys:

 LD A, $FF ; Reset key port
 OUT (C), A

 LD A, $0FE
 OUT (C), A
 NOP
 NOP
 IN B, (C)

 BIT 0, B
 JP Z, Down
 BIT 1, B
 JP Z, Left
 BIT 2, B
 JP Z, Right
 BIT 3, B
 JP Z, Up

 JP InKey

Down:
 CALL MoveDown
 BIT 1, B
 CALL Z, MoveLeft
 BIT 2, B
 CALL Z, MoveRight
 JP DispText

Left:
;There is no need to check for Down key anymore.
 CALL MoveLeft
 BIT 3, B
 CALL Z, MoveUp
 JP DispText

Right:
 CALL MoveRight
 BIT 3, B
 CALL Z, MoveUp
 JP DispText

Up:
 CALL MoveUp
 JP DispText

MoveDown:
 LD A, (y_pos) ; Check if at bottom edge of screen
 CP 57
 RET Z
 INC A ; Down one pixel
 LD (y_pos), A
 RET

 Appendix C: Working Directly With The Keypad 12

MoveUp:
 LD A, (y_pos) ; Check if at top edge of screen
 OR A
 RET Z
 DEC A ; Up one pixel
 LD (y_pos), A
 RET

MoveLeft:
 LD A, (x_pos) ; Check if at left edge of screen
 OR A
 RET Z

 DEC A ; Left one pixel
 LD (x_pos), A
 RET

MoveRight:
 LD A, (x_pos) ; Check if at right edge of screen
 CP 96-28 ; 96 - number of pixels the string takes up
 RET Z

 INC A ; Right one pixel
 LD (x_pos), A
 RET

x_pos: .DB 0
y_pos: .DB 0
string: .DB "Let\'s Go!", 0

