
Appendix D: Interrupts 1

TI-83+ Z80 ASM
for the Absolute

Beginner

APPENDIX D:

• Interrupts

Appendix D: Interrupts 2

INTERRUPTS

 Take a moment to pretend that it’s your turn to fix dinner for your
family of nine people. You need to start dinner at 3, and have it ready
by 5. So you decide to fix a tasty gourmet dinner that needs to be stirred
every ten minutes.

 Now, are you going to just stare at the food, stir it after 10 minutes,
stare at it again, stir it, stare at it? Probably not. You may grab a book,
type some emails, play some Xbox, or do something else while the 10
minute timer on your stove is running.

 When the timer rings, are you going to finish what you were doing
before stirring the dinner? Even if you had one hour before you finished
playing an Xbox game? Chances are the food would burn to a crisp if
you waited to stir it. Nope, you would interrupt whatever you were
doing to stir the food, and then you would return to your relaxing until
ten more minutes passed.

 Sometimes, when you design a calculator program, you have
something that needs to happen on a consistent, timely basis, no matter
where in the program you are. For example, in a multiplayer game I’m
writing, I want to constantly check the link port on the Ti-83+ to see if
there’s data to receive from the other player, and I want this to happen
every 1/118th of a second so that the multiplayer game stays in sync. So
every 1/118th of a second, my program will interrupt itself to run the
code that will check the link port. Afterwards, the program will resume
running from where it was interrupted.

 Pretty cool that you can do this, huh? This is exactly what CALLS
do: When you use CALL label, the program goes to the label, and after

Appendix D: Interrupts 3

reaching RET, the program returns to the line after the CALL statement,
so that the rest of the program can run normally. However, CALLs do
not happen on a timely and consistent basis. Why is that? Because the
CALL will run ONLY when the calculator reaches the instruction in the
program code. To state the obvious, the calculator is running your
program instruction by instruction, and it won’t run CALL if there is no
CALL at that point in your code.

What we want is something that will be called at any point in the
program whenever a certain amount of time has passed. This lesson is
meant to teach you how to do that. You will need appbackupscreen to
use interrupts in your program or your application, at least for this
lesson. For the most part, we will have an interrupt routine that runs
approximately every 1/118th of a second, but I’ll teach you how to
change the speed later on in this lesson.

The calculator has 3 interrupt modes: Mode 0, Mode 1 and Mode
2. We want to use interrupt mode 2, since Mode 2 is the interrupt mode
that lets us run our own interrupt routine that will run every 1/118th of a
second. (Mode 0 is not used by the Ti-83+, and we can’t use Mode 1
since the calculator uses it.) Be careful: if you use interrupt mode 2, you
cannot use _getKey and _getCSC.

To start off, you’ll want to code your interrupt routine. (Fear not,
there is an example program!) You should keep your interrupt small if
you can. Begin it with a label, say “Begin_Interrupt_Routine,” and end
it with a label, say “End_Interrupt_Routine.” Then you’ll want to copy
it to $9A9A, an address that points to an area in appbackupscreen.

Appendix D: Interrupts 4

 LD HL, Begin_Interrupt_Routine

 LD DE, $9A9A

 LD BC, End_Interrupt_Routine – Begin_Interrupt_Routine

; BC now equals how many bytes to copy

 LDIR

 But how does the calculator know where your interrupt routine is?
Well, that’s a little bit tricky. Every 1/118th of a second, the calculator
will check one of 256 different locations (of your choice) in RAM for a
program location to jump to. When the program finds that two-byte
value, it will interrupt itself and jump to that location that it found. So if
we want to run Begin_Interrupt_Routine every 1/118th of a second, we
need to store $9A9A at these 256 locations the calculator checks. That
way, the calculator will always read $9A9A as the interrupt routine, and
it will always jump to $9A9A about every 1/118th of a second.

 We need to decide which 256 locations in RAM we want the
calculator to check. A location is always a two-byte number, as you
already know. We can give the calculator the first byte of this two-byte
location by using the I Register, and this value will never change unless
we want it to. The second byte of our two-byte number is always chosen
at random…since this second byte can be from 0-255 (00 – FF in
hexadecimal), and since register I will never change, that’s 256
locations!

Appendix D: Interrupts 5

 We will let Register I be equal to $99. This is because the
numbers $9900 to $99FF (a total of 256 locations) all point to
appbackupscreen. You can only access register I by using register A:
Either LD I, A or LD A, I.

 LD A, $99

 LD I, A

 Now that the calculator knows where to look for places to jump to
every 1/118th of a second, we need to make sure that the calculator will
always jump to $9A9A.

 LD HL, $9900 ; The Beginning of the 256 locations that

 ; the calculator will search

 LD B, 0 ; Believe it or not, if you use DJNZ on B = 0,

 ; your code will loop 256 times. So we can

 ; store $9A9A to 256 locations!

 LD DE, $9A9A ; The location of our interrupt code

Store_Interrupt_Code_Location:

 ld (hl), D

 inc hl

 ld (hl), E

 DJNZ Store_Interrupt_Code_Location

Appendix D: Interrupts 6

 As was aforementioned, the advantage to interrupt routines is that
they can occur anywhere in the program, every 1/118th of a second. But
what happens if you jump in the middle of a routine, and your registers
have very important values that you can’t afford to lose? If your
interrupt routine uses any of those registers, you lose those values that
the registers previously held.

 You could solve this by pushing AF, BC, DE and HL during the
interrupt routine, and then popping them before you exit your interrupt
routine. Then your registers will hold whatever values they had before
your code was interrupted. But there is a better way to save your
valuable register data besides PUSH and POP. EX AF, AF’ will save
the value of AF temporarily, and EXX will save the values of BC, DE
and HL. You must use these at the beginning of your interrupt routine,
and again at the end of your interrupt routine.

 There are some more simple instructions you need to know about,
but I will give them to you in the form of the example program on the
next few pages. This program will draw sprites on the screen, but it will
calculate approximately how many seconds have passed, so that when
you exit, you can see approximately how much time you spend goofing
off on your calculator. Exit the program by pressing 2nd, then divide the
result by 118 to see approximately how many seconds have passed. (If
you are using a Ti-83+ Silver Edition or a Ti-84+, divide by 107.79 to
get an approximation.)

Appendix D: Interrupts 7

#include "ti83plus.inc"

.org $9D93

.db t2ByteTok, tAsmCmp

;Even though appbackupscreen is needed for our interrupt code and data, it is safe to use at least the 700th byte of appbackupscreen.

Number_Of_Seconds .equ appbackupscreen + 700

End_Program .equ appbackupscreen + 702 ; This value of the variable will be equal to 1 if it’s time to end our program.

Image_Position .equ appbackupscreen + 703

 B_CALL _ClrLCDFull

 ld a, 0

 ld (End_Program), a ; We don’t want to end the program, so we let this value equal to 0.

 ld hl, 0

 ld (Number_Of_Seconds), hl ; No time has passed yet

 di ; DI means Disable Interrupts. We do not want interrupt routines running while we are preparing the interrupt code.

 ld hl, Interrupt_Routine

 ld de, $9A9A

 ld bc, End_Of_Interrupt_Routine - Interrupt_Routine

 ldir

 ld a, $99

 ld i, a

 ld hl, $9900

 ld b, 0

 ld de, $9A9A

Store_Interrupt_Code_Location:

 ld (hl), d

 inc hl

 ld (hl), e

 djnz Store_Interrupt_Code_Location

 im 2 ; We want interrupt mode 2.

 ld a, %00000110 ; Tell the calculator we want an interrupt to happen every 1/118
th

 of a second.

 ; You’ll learn how to do this at the end of this lesson.

 out (4), a

 ei ; Enable Interrupts.

Appendix D: Interrupts 8

Draw_Picture_On_Screen:

;To draw our picture, we are going to use the sprite routine from appendix B.

;-----------------------------------

; WILL HAVE PICTURE ROUTINE IN FULL RELEASE

;-----------------------------------

Interrupt_Routine:

 di ; We don’t want the interrupt routine to interrupt itself.

 ex af, af' ; Saves the values of our registers

 exx

 ld hl, (Number_Of_Seconds)

 inc hl

 ld (Number_Of_Seconds), hl

;Detects for a keypress without using _getKey, since interrupt mode 1 cannot be used. If you did not read appendix C, don't try to understand this code.

 ld a, $FF

 out (1), a

;See if the second key is pressed

 ld a, $BF

 out (1), a

 nop

 nop

 in a, (1)

 BIT 5, a

 jr z, End_ASM_Program

 exx

 ex af, af'

;The following code resets the interrupt timer. I've personally found that it is a requirement at the end of an interrupt routine.

 ld a,%00001000

 out (3),a

 ld a,%00001010

 out (3),a

 ei ;Enable Interrupts Again

 ret ;Exit our interrupt routine and return to the place where the program was interrupted

Appendix D: Interrupts 9

End_ASM_Program:

 im 1 ;It is VERY important that you turn interrupt mode 1 back on before your program ends, because the calculator needs mode 1.

 B_CALL _ClrLCDFull

 ld hl, (Number_Of_Seconds)

 ld a, 1

 ld (End_Program), a

 B_CALL _DispHL

 B_CALL _getKey

 ret

End_Of_Interrupt_Routine:

Smiley_Face:

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

 .db %01010101,%01010101,%01010000,%00000101,%01010101,%01010101

 .db %10101010,%10101010,%10000000,%00000010,%10101010,%10101010

 .db %01010101,%01010101,%00000000,%00000001,%01010101,%01010101

 .db %10101010,%10101010,%00001100,%00110000,%10101010,%10101010

 .db %01010101,%01010101,%00011110,%01111000,%01010101,%01010101

 .db %10101010,%10101010,%00011110,%01111000,%00101010,%10101010

 .db %01010101,%01010100,%00001100,%00110000,%01010101,%01010101

 .db %10101010,%10101010,%00000000,%00000000,%00101010,%10101010

 .db %01010101,%01010100,%00000000,%00000000,%01010101,%01010101

 .db %10101010,%10101010,%00000000,%00000000,%00101010,%10101010

 .db %01010101,%01010100,%00100000,%00000010,%01010101,%01010101

 .db %10101010,%10101010,%00010000,%00001100,%00101010,%10101010

 .db %01010101,%01010100,%00001110,%01110000,%01010101,%01010101

 .db %10101010,%10101010,%00000001,%10000000,%10101010,%10101010

 .db %01010101,%01010101,%00000000,%00000000,%01010101,%01010101

 .db %10101010,%10101010,%10000000,%00000000,%10101010,%10101010

 .db %01010101,%01010101,%01000000,%00000001,%01010101,%01010101

 .db %10101010,%10101010,%10100000,%00001010,%10101010,%10101010

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

 .db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101

 .db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

Appendix D: Interrupts 10

Remember, try to keep your interrupt routines small, so that you
don’t run out of space in appbackupscreen. If you MUST have a large
interrupt routine, place some code in another area, and CALL it from
your interrupt routine.

Now, did I hear someone ask “How do I set an interrupt speed?”

CODE SPEED

ld a, %00000110

out (4), a

Slowest. This is the default, and
the speed used for the example
program. About 118 times a
second on a Ti-83+

ld a, %00000100

out (4), a

Medium-Slow. About 170 times a
second on a Ti-83+

ld a, %00000010

out (4), a

Fast—About 248 times a second
on a Ti-83+

ld a, %00000000

out (4), a

Fastest—About 560 times a second
on a Ti-83+

