
SIR CMPWN TECHNOLOGIES

KnightOS for Developers
Coding multithreaded programs for KOS

Drew DeVault

10/21/2010

This document is a beta release and is subject to and likely to change.

Contents
Introduction .. 3

Memory Layout ... 3

Programs ... 4

Libraries ... 5

Clipboard ... 6

Images ... 7

Kernel Routines ... 8

KillThread .. 9

KillCurrentThread .. 10

FastCopy .. 11

FastCopySafe ... 12

Introduction
Thank you for choosing KnightOS for your development needs. KnightOS is a multi-threaded operating

system, which puts considerably more requirements on the developer. However, there are several

routines built into KOS to make this easier on you as the developer.

There are two different ways of executing code under KnightOS – libraries and programs. Libraries are

utilities used by programs to perform certain tasks, similar to a shell under TIOS. KnightOS provides

several libraries for your use, stored at /lib/. You can also create your own libraries. KOS supports up to

20 libraries loaded simultaneously. Libraries run from RAM, and SMC is allowed, although not

recommended unless it is safe to execute the routines more than once.

The other method of programming under KOS is with programs. Programs also run from RAM, and SMC

is completely safe, unlike potential complications with libraries, as multiple instances of a program will

are allocated memory twice. Programs have their own set of registers, including shadow and index

registers, all of which are safe to use without disabling interrupts. In fact, disabling interrupts is frowned

upon, because the user will be unable to switch programs and other tasks will not be given CPU time.

Memory Layout
The following diagram explains how memory is laid out in KnightOS:

// TODO

Programs
Programs are run from RAM. However, due to the multitasking nature of KnightOS, programs do not

know where in RAM they will execute until runtime. This makes certain tasks harder. However,

KnightOS provides several helper routines to ease this process. First, let’s talk about the header.

[Subject to change] It includes a stack size. All programs have a stack unique to them. The first byte of

the header describes the size of the stack, in bytes. This is a typical program header:

Code z80
.db 10 ; 10 bytes for stack

Program:

.org 0

 ; Your code here

In order to accommodate for position-independent code, the opcodes jp, call, and occasionally ld are

unavailable. KnightOS provides several routines to handle this, and KnightOS.inc has the following

macros to use these opcodes:

Macro Function

kjp Address Jumps to Address, plus the offset of the program in RAM

kjpc Condition, Address If Condition is true, jumps to Address, plus the offset of the program
in RAM

kcall Address Pushes PC to the stack and jumps to Address, plus the offset of the
program in RAM

kcall Condition, Address If Condition is true, pushes PC to the stack and jumps to Address,
plus the offset of the program in RAM

kld Register, Address Loads the value of Address into Register

kldp Register, Address Loads the value at Address into Register

The kernel uses self-modifying code to modify these routines at runtime so that they only have to run

once. It will run slower the first time one of these is executed, but the subsequent times will run quickly.

You can find an example program in /samples/program.asm.

Libraries
Libraries run from RAM as well as programs. Libraries provide functionality that is common among

several programs, similar to a shell. The OS should provide several libraries for programs to access GUI

and other common routines. Like programs, they must be position-independent, and like programs,

there are routines to help this work. Each library has an ID word associated with it. This word is used to

reference the library when programs make calls to it, as well as within libraries themselves to call

internal routines. It should be a number unique to your library. Be sure to register your library’s

number at http://knightos.sourceforge.net/. This is an example header for a library:

Code z80

.dw 0 ; Library ID
Library:
 .org 0
 ; Your code here

As libraries are required to be location-independent, the following macros are provided in KnightOS.inc

to help you achieve this. These are the same macros you can use inside a program to call library

functions:

Macro Function

ljp ID, Address Jumps to Address plus the offset of the library with the matching ID

ljpc ID, Condition, Address If Condition is true, jumps to Address plus the offset of the library with
the matching ID

lcall ID, Address Pushes PC to the stack and jumps to Address plus the offset of the library
with the matching ID

lcallc ID, Condition, Address If Condition is true, pushes PC to the stack and jumps to Address plus the
offset of the library with the matching ID

lld ID, Register, Address Loads Address plus the offset of the library with the matching ID into
Register

lldp ID, Register, Address Loads the value at Address plus the offset of the library with the
matching ID into Register

Like programs, the kernel uses SMC to make each subsequent run of the code faster after the first time.

An example library can be found in /samples/lib.asm

http://knightos.sourceforge.net/

Clipboard
KnightOS features a global clipboard shared among all programs. It consists of three bytes of Safe RAM

that describe what is in the clipboard and where to find it. The first byte is the ID byte, which represents

what kind of data is currently copied. The next two bytes are the address of the data in RAM. It is

generally good practice to copy the data elsewhere, rather than to point to where it is at the moment,

so that the user can modify the copied data without modifying the clipboard. You may register your

type ID on http://knightos.sourceforge.net/, so that two programs do not have conflicting data types.

Here are the data types used by KnightOS that your program may take advantage of:

ID Description

0x00 Plain Text

0x01 Image (See Images for more information)

http://knightos.sourceforge.net/

Images
KnightOS uses a special format for storing images, in order to create a standard for programs to use

when exchanging data. This is the same format that should appear on the clipboard for type 0x01 data.

The pointer word in the clipboard should point to a valid image, which is structured as follows:

Offset Size Data

0x0000: 2 bytes Width
0x0002: 2 bytes Height
0x0004: 1 byte Levels of grayscale
0x0005: X bytes Data

 The data should have each buffer in order.

Kernel Routines
These routines are provided by the kernel, and exist on ROM page 00. Page 00 is always swapped in, so

they may safely be run with CALL or JP. When specified, they may be run with RST.

Graphics

FastCopy FastCopySafe

Multitasking

KillCurrentThread KillThread

KillThread

Multitasking

Kills a specific thread and frees all resources associated with it. You shouldn’t use this to kill the

currently executing thread, instead use KillCurrentThread.

Input:

A: The thread to destroy

Output:

None

Destroys:

All resources associated with specified thread.

Example Usage
ld a, 1

call KillThread ; Kills the thread with an ID of 1

KillCurrentThread

Multitasking

Kills the current thread and frees all resources associated with it. Use KillThread to kill a thread other

than your own. It will not return to your program after execution, so use JP instead of CALL to save a

byte.

Thread safety: Thread Safe

Input:

None

Output:

Current thread stops execution

Destroys:

All registers and stack

Example Usage

jp KillCurrentThread ; End this thread

FastCopy

Graphics

Copies the contents of LCDBuffer to the screen. May be run with RST rFastCopy. Safe for all models of

calculators, even with newer LCDs.

Thread safety: Thread Unsafe. If you do not have exclusive control of the processor, use FastCopySafe.

Inputs:

None

Outputs:

LCDBuffer is copied to the screen

Destroys:

None

Code: Example Usage

ld hl, Picture
ld de, LCDBuffer
ld bc, 768
ldir ; Copy an image to the buffer
rst rFastCopy ; And copy the buffer to the screen

FastCopySafe
Graphics

Copies LCDBuffer to the screen only if your thread has access to the screen.

Inputs:

None

Outputs:

LCDBuffer is copied to the screen.

Destroyed:

None

Code: Example Usage

ld hl, Picture
ld de, LCDBuffer
ld bc, 768
ldir ; Copy an image to the buffer
call FastCopySafe ; And copy the buffer to the screen

