
SIR CMPWN TECHNOLOGIES

KnightOS Filesystem
Specification

Version 2.0

Drew DeVault

Last Updated: 3/7/2011

This document describes the structure of the KnightOS Filesystem and the means through which
programs may access it.

Contents
1: Structure ... 3

1.1: File Allocation Table ... 3

1.1.1: File Entries ... 3

1.1.2: Directory Entries ... 4

1.1.3: Garbage Entries ... 4

1.1.4: Renamed Entries ... 4

1.1.5: Table End Entries .. 4

1.2: File Storage Table ... 4

1.3: Modifying the Filesystem ... 4

1.3.1: Formatting the Filesystem .. 4

1.3.2: Creating Files ... 4

1.3.3: Modifying Files .. 5

1.3.4: Creating Directories .. 5

1.3.5: Renaming Entries .. 5

2: Garbage Collection .. 5

2.1: Setup .. 5

2.2: Garbage Removal and Shifting ... 6

2.2.1: Temporary RAM .. 6

2.2.2: File Preservation (Shifting) .. 6

2.2.3: Garbage Removal .. 6

2.2.4: Handling Renamed Files .. 6

3. File Streams ... 7

1: Structure
The structure of the Knight Filesystem is based on ROM pages. The entire filesystem is stored in ROM,

and each portion of the filesystem is stored on a single page. This decision is based on the fact that

ROM is manipulated one page at a time from the calculator. However, it presents a challenge with

Garbage Collection, which is described in section 2: Garbage Collection. The filesystem consists of two

main areas – the FAT (File Allocation Table), which describes how each file and directory is stored, and

the files themselves, where the actual contents of each file is kept. The latter is referred to as the File

Storage Table (FST).

Within a single page, the table itself grows forward in memory. However, if the end of a page is

reached, the table continues on the next page down. For example, if the end of page 01 is reached, the

FAT continues on page 00. (Note that page 00 is a reserved page, and such an example is not possible).

All values spanning multiple bytes are stored in little endian format. Textual values are ASCII.

1.1: File Allocation Table
The FAT is used to store each file’s metadata. This includes the name of the file, the directory it resides

in, and more. It is also used to store the directory hierarchy. FAT pages are marked with 0xF0 as the

first byte, and they continue from there. The format of each entry is as follows:

Offset Size (bytes) Item Description

0x0000 1 Type This one byte descriptor identifies what the entry is

0x0001 2 (x) Length The length of this entry’s data, in bytes

0x0003 x Data The data that makes up this entry (unique to each type)

Each entry has its own entry type, which specifies what kind of entry it is. The types are:

ID Item Description

0x00 Garbage File This represents a file to be picked up by the garbage collector (deleted)

0x01 Garbage Dir This represents a directory to be picked up by the garbage collector

0xC0 Renamed A renamed entry is one that should be removed, but leave the file intact

0xFC File A file entry describes a file in the FST

0xFE Directory A directory entry specifies that the entry is a directory

0xFF Table End 0xFF signals the end of the FAT

All filesystem space is initially set to 0xFF, so that it may be modified at any time. Garbage entries are

0x00 so that any other entry may be turned into garbage.

1.1.1: File Entries

A file entry consists of the following information:

Offset Size (bytes) Item Description

0x0000 3 File Size The size, in bytes, of the file

0x0001 2 Directory ID The directory ID this file resides in (root is 0x00)

0x0005 1 Flags For possible future use

0x0006 1 Flash Page The page this file begins on within the FST

0x0007 2 File Offset The offset from the start of Flash Page where this file begins

0x0009 x Name The zero-delimited name of the file (up to 245 characters)

1.1.2: Directory Entries

A directory entry consists of the following information:

Offset Size (bytes) Item Description

0x0000 2 Directory ID The unique ID for this directory (root is 0x00)

0x0002 2 Parent ID The ID of the parent directory (root is 0x00)

0x0004 1 Flags For possible future use

0x0005 x Name The zero-delimited name of the file

1.1.3: Garbage Entries

Any entry that is marked with 0x00 is considered garbage. In flash, any value may be set to 0x00. This

makes it easy to delete any entry. Garbage files should have their corresponding FST entries removed,

and garbage directories should have every included file removed (the OS should set all included files to

garbage at deletion-time).

1.1.4: Renamed Entries

When an entry

1.1.5: Table End Entries

A value of 0xFF denotes the end of a table. 0xFF can be changed to anything, which is why it is used.

1.2: File Storage Table
The file storage table does not have any sort of identifiers. It is merely the raw data of every file in the

filesystem, appended to each other, including any garbage files made since the last garbage collection.

This table begins at page 01 in KnightOS (subject to change) and continues forward until it meets the

FAT. FST pages are not marked with a starting byte. It is generally a good idea to keep a value (page and

offset) representing the end of both the FAT and FST sections stored in RAM during OS execution, as

well as the largest used directory ID (all of this information may be found at boot time, and during

Garbage Collection).

1.3: Modifying the Filesystem
The following information applies only to manual manipulation of the filesystem, generally from within

the Operating System.

1.3.1: Formatting the Filesystem

In order to use KFS, ROM must first be prepared. First, all sectors of ROM the filesystem will encompass

must be cleared to 0xFF (the pages of the filesystem must span entire sectors). Then, the last page the

filesystem will include should have the first byte set to 0xF0 (FAT identifier). The ROM is now prepared

for KFS, and all routines should now work.

1.3.2: Creating Files

Making a new file is a relatively simple process. In RAM, collect the following information:

 File Name

 Residing Directory ID

 Flags

All memory within the filesystem past the end of the FAT is set to 0xFF. Because of this, it is all

writeable. If at any point your routine encounters a byte outside the FAT or FST that is not 0xFE, the

routine should fail. A garbage collect should be able to solve most of these problems in such cases.

Append a file entry to the end of the table, and open the file for writing with a file stream (see section 3.

File Streams). Leave the length at 0xFFFFFF until you know for sure how large it will be. As the stream is

written to, keep track of the file size in RAM, and when it is closed, write it to the file entry.

1.3.3: Modifying Files

Due to the nature of ROM, you cannot easily modify data. Instead, you should mark the original file

entry as garbage, and open a writeable stream to a new entry (mirroring the original entry), which

directs to a new entry at the end of the FST. The Garbage Collector will eventually clean up the original

file. It is a good idea to leave the size at 0xFFFFFF and update it when the stream is closed.

1.3.4: Creating Directories

Creating a directory is relatively simple, in the same way a file is. Collect the following information:

 Directory Name

 Directory ID (the current highest directory ID plus one)

 Parent Directory ID (0x00 for root)

Once you have this, create a new entry in the FAT with this information, and increment the highest

directory ID in RAM (if you choose to store this value in RAM).

1.3.5: Renaming Entries

Any entry may be easily renamed. It is as simple as marking the original entry as renamed, and creating

a new entry with the same information, but a different name. The Garbage Collector will clean up the

old entry.

2: Garbage Collection
The garbage collection (GC) process is performed whenever the FST meets the FAT, or vice versa. It may

also be manually triggered. The OS must also set aside two Flash sectors (see section 2.2: Garbage

Removal and Shifting for information on the possibility of using one flash sector and one RAM page),

outside the filesystem, that are not used during Garbage Collection, and whose contents may be

modified during Garbage Collection. These are called the swap sectors. Garbage collection must be

performed from page 00.

2.1: Setup
In order to prepare for garbage collection, the following steps must be performed:

1. Unlock flash

2. Erase the swap sector (set to 0xFF)

3. Load the first FAT page to bank 1, and the first swap sector page in bank 2

4. Set aside working RAM in bank 3

2.2: Garbage Removal and Shifting

Garbage removal is the process of actually removing renamed entries, deleted files, and garbage entries.

Shifting refers to the process of shifting the subsequent entries (both FAT and FST) to fill in the

remaining space. Both processes occur simultaneously. First, you must clear the swap sector, and load

the current FAT sector into it. Then, clear the current FAT sector, and load every page back (from the

swap sector), except for the current working page. Repeat the process for the current FST sector. Then,

you can begin to process the current FAT page. Simply begin a loop that moves from entry to entry, in

order, using the swap page to observe the FAT entries. During this process, if the end of the FAT or FST

page is ever reached, the next page should be swapped in, and the offset/page values updated (see

section 2.2.1: Temporary RAM below).

Note: On models other than the TI-83+ BE (or any model/OS where an entire RAM page is easily

available), it is possible not to use two swap sectors, but to use an extra page of RAM for temporary

storage. If you choose to do so, adapt this specification as necessary. When you swap out the RAM

page in bank 3 using this method, you should use registers to track the values stored in temporary RAM

(described in section 2.2.1: Temporary RAM).

2.2.1: Temporary RAM

The following values need to be kept in RAM, in bank 3:

 The current FAT page

 The current FST page

 The current FAT offset (writing)

 The current FAT offset (reading)

 The current FST offset (writing)

 The current FST offset (reading)

Writing offsets are the new values, and the reading offsets are their place in the swap pages.

2.2.2: File Preservation (Shifting)

If an entry is not marked as garbage, it should be copied back to the FAT page at the current FAT offset.

If it is a file entry, the corresponding FST entry should also be copied. To do so, first copy the entry.

Then, swap in the current FST page, and copy it back from the second swap page. Swap the FAT page

back, and the first swap page, and update the FAT/FST offset values (and page values if applicable).

2.2.3: Garbage Removal

When an entry is found that is marked as garbage, it is not copied. Instead, it is skipped in the FAT write

offset, and the FAT read offset moves past it. The same applies to the FST write/read offsets. It is

simply not preserved.

2.2.4: Handling Renamed Files

Renamed files are handled the same way as garbage entries, except the FST offset is not updated.

3. File Streams
In order to facilitate manipulation of the filesystem, it is suggested that you use file streams. When a file

is open for writing, create a writable file stream, containing the address, page, and size of the file. When

writing, the OS should provide a routine that write a byte (or several), and handles page switching and

size modification. The operating system should also provide a routine to close streams, which will apply

the size changes to the FAT entry (see 1.3.2: Creating Files and 1.3.3: Modifying Files for information).

Readable streams will do the same, but should not be allowed to write through OS routines. With this

method, only one writable stream may be open at a time, so you should encourage programmers coding

against your OS to quickly use writable streams, and close them as fast as possible (especially in

multitasking/multithreading OSes).

4. Notes
The KnightOS Filesystem provides an easy way to manage a filesystem tree through ROM, specifically on

the TI-83+ family. This filesystem has been optimized to make it run quickly and avoid excessive wear on

the Flash chip. Please send any comments or questions you have to sircmpwn@gmail.com, or post

them in the KnightOS forum.

mailto:sircmpwn@gmail.com
http://www.omnimaga.org/index.php?board=112.0

