
Axe Parser v0.2.0

Command List Index

System
Screen and Buffer

Control Blocks
Labels and Subroutines

Basic Math
Advanced Math

Drawing
Data and Storage
File Management

System

Command Description

_
Spaces are ignored in most situations. They mainly just help for code

organization and readability.

: The colon and enter key end a line of code.

.
The period is a single line comment. Whatever follows will be ignored until

the next newline. Must be the first character on the line.

DiagnosticOn
Turns on the run indicator (marching ants). Program will display "done"

after finishing.

DiagnosticOff Turns off the run indicator. Program will not display "done" after finishing.

Full
Full speed mode is activated if supported, making it 3 times faster on newer

calculators. Returns 0 if not supported.

Normal Full speed mode is deactivated.

Pause EXP Pause for the given amount of time in milliseconds.

getKey
Returns the last key pressed or zero if no keys are pressed. Its just like the

BASIC getkey, but with different codes.

getKey(KEY)
Returns 1 if the key is held down this instant and 0 otherwise. The key code

must be a single constant.

getKey(0) Returns a non-zero number if any key is held down and 0 otherwise.

SinReg
WAVE,TIME

Sound is played out of the link port. Wave must be between 1-255 inversely

proportional to frequency. Time is in the order of microseconds.

Asm(HEX) Native assembly code written in hexadecimal is inserted at the current

position.

Screen and Buffer

Command Description

ClrHome Erases the screen and text shadow and moves the cursor to the upper left corner.

ClrDraw Erases the buffer.

DispGraph Draws the buffer on the screen.

DispGraphr

Draws the buffer on the screen over an alternating crosshatch of the back buffer.

Used for grayscale.

StoreGDB Copies the screen to the buffer.

StorePic Copies the buffer to the back-buffer.

RecallPic Copies the back-buffer to the buffer.

DrawInv The colors on the buffer are inverted.

Horizontal +
Horizontal -

The buffer is shifted right (+) or left (-) by 1 pixel. White pixels are shifted in.

Vertical +
Vertical -

The buffer is shifted down (+) or up (-) by 1 pixel. New pixels are not shifted in,

that row remains the same.

Shade(EXP) Sets the contrast. 0 is lightest, 63 is darkest.

Control Blocks

Command Description

If EXP
 code1
End

If the expression is true, code1 will be executed.

If EXP
 code1
Else
 code2
End

If the expression is true, then only code1 is executed. Otherwise, only

code 2 is executed.

!If EXP
 code1
End

If the expression is false, code1 will be executed.

!If EXP
 code1
Else
 code2
End

If the expression is false, then only code1 is executed. Otherwise, only

code 2 is executed.

While EXP
 code1
End

The expression is checked first. If its true, code1 will be executed over

and over until its false.

Repeat EXP
 code1
End

The expression is checked first. If its false, code1 will be executed over

and over until its true.

For(VAR,EXP1,EXP2)
 code1
End

The variable is initialized with expression1. Until the variable is

greater than expression2, code1 is executed and the variable is

incremented by 1.

Labels and Subroutines

Command Description

Lbl LBL Creates a label at the current position.

Goto LBL Jumps to the label.

DelVar LBL
Frees the label name from memory. The name can then be reused somewhere

later in the code.

Sub(LBL) Calls the subroutine. All subroutines should end with a Return.

Return Returns from a subroutine. If not in a subroutine, the program will end.

ReturnIf EXP Returns only if the expression is true.

Return!If
EXP

Returns only if the expression is false.

Basic Math

Command Description

VAR Returns the variable. Uppercase A through Z are variables.

EXP→VAR Stores the expression into the variable.

'CHAR' Converts an ASCII constant into an integer.

-EXP
Returns the negative of the expression. That's a negative sign, not a minus

sign!

EXP1+EXP2
EXP1-EXP2

Expression2 is added to or subtracted from expression1.

EXP1*EXP2
EXP1/EXP2
EXP1^EXP2

Expression1 is multiplied, divided, or the modulus of expression2.

EXP2
 The expression is multiplied by itself.

EXP1=EXP2
EXP1≠EXP2

Returns 1 if the statement is true or 0 if its false. This is an unsigned

comparison.

EXP1<EXP2
EXP1≤EXP2
EXP1>EXP2
EXP1≥EXP2

EXP1 or EXP2
EXP1 and
EXP2
EXP1 xor
EXP2

Returns the bitwise operation of the expressions. You need parenthesis to use

this with truths.

abs(EXP) Returns the absolute value of the expression.

√(EXP) Returns the square root of the expression.

sin(EXP)
Returns the sine of the expression. One Period is 255 and the value returned

ranges from -127 to 127.

cos(EXP)
Returns the cosine of the expression. One Period is 255 and the value returned

ranges from -127 to 127.

rand Returns a random 16 bit number.

Advanced Math

Command Description

EHEX
Converts a 4 digit hexadecimal number into an integer. That E is the scientific

notation E.

EXP1<<EXP2
EXP1≤≤EXP2
EXP1>>EXP2
EXP1≥≥EXP2

Signed comparisons for numbers that aren't always positive. Returns 1 if the

statement is true or 0 if its false.

Drawing

Command Description

Disp EXP

The string that is pointed to is displayed at the cursor position. The cursor

moves with the string. If it reaches the end of the screen, it will loop

around to the next line.

Disp EXP▶Dec
The expression is displayed as a decimal at the cursor position. The cursor

is then advanced 5 spaces.

Disp EXP▶Frac
The ASCII character of the expression is displayed at the cursor position.

The cursor is advanced 1 space. A new line is added if it hits the edge.

Disp "" The string is displayed at the cursor position.

Disp i
The cursor moves to the next line down. This is the imaginary, not

lowercase 'i'.

Output(X) The cursor moves to the cursor position (X/256,X%256).

Output(X,Y) The cursor moves to the cursor position (X,Y).

Output(X,Y,
The cursor moves to the cursor position (X,Y) and whatever follows is

displayed at that position.

Pxl-On(X,Y) A pixel becomes black on the buffer at (X,Y).

Pxl-Off(X,Y) A pixel becomes white on the buffer at (X,Y).

Pxl-Change(X,Y) A pixel will change color on the buffer at (X,Y).

pxl-Test(X,Y) Returns 1 if pixel is black and 0 if pixel is white on the buffer at (X,Y).

Pt-On(X,Y,PIC)
The 8x8 sprite that expression points to is drawn to the buffer at (X,Y).

Does not clear the area behind it.

Pt-Off(X,Y,PIC)
The 8x8 sprite that expression points to is drawn to the buffer at (X,Y) but

clears the area behind it first.

Pt-
Change(X,Y,PIC)

The 8x8 sprite that expression points to inverts its pixels on the buffer at

(X,Y).

Text(X,Y,EXP) The text pointed to is drawn at (X,Y). See below for drawing details.

Fix CODE

Changes how text is drawn. Code must be a constant.

0 = Small size. Calculator should exit in this mode if changed!

1 = Large size.

2 = Normal font. Calculator should exit in this mode if changed!

3 = Inverted font.

4 = Draw to screen. Calculator should exit in this mode if changed!

5 = Draw to buffer.

Data and Storage

Command Description

""
Adds the string to program memory, but without the ending

character.

[HEX] Adds the hex to the program memory.

[PICVAR]
Absorbs the 96x63 picture from RAM into the program (756 bytes).

Only the source needs the pic, not the executable.

ΔList(NUM,...)
Adds the byte to program memory. Numbers ending with

r
 are added

as 2 byte numbers.

det(SIZE) Adds Size bytes of zeros to program memory.

DATA→NAME
Saves the data's pointer to a static variable. Also terminates current

string if applicable.

NAME Returns a pointer to the start of the data.

L1 Returns a pointer to some free memory.

L2

L3

L4

L5

L6

L1 = 714 bytes (saveSScreen+54) Volatility: LOW

L2 = 531 bytes (statVars) Volatility: LOW

L3 = 768 bytes (appBackUpScreen) Volatility: MED (Saving to

back-buffer will corrupt)

L4 = 323 bytes (tempSwapArea) Volatility: MED (Corrupt when

archiving/unarchiving in program)

L5 = 128 bytes (textShadow) Volatility: MED ("Disp","Output", and

"ClrHome" will corrupt)

L6 = 768 bytes (plotSScreen) Volatility: HIGH (Any buffer drawing

will corrupt)

{EXP}r
 Returns the 2 byte data the expression points to.

{EXP}
Returns the single byte the expression points to. It will be in the range

0 to 255.

int(EXP)
Returns the single byte the expression points to. It will be in the range

-128 to 127.

EXP1→{EXP2}r

The full 2 bytes of Expression1 is stored to where Expression2

points.

EXP1→{EXP2} The single byte of Expression1 is stored to where Expression2 points.

Fill(PTR1,SIZE)
The byte already at Ptr1 is copied to all the bytes after it until Size

bytes have been filled with that value. Zero is not a valid Size.

conj(PTR1,PTR2,SIZE)
Size bytes starting from Ptr1 are copied to Size bytes starting at Ptr2.

Zero is not a valid Size.

expr(PTR1,PTR2,SIZE)
Size bytes starting from Ptr1 are exchanged with Size bytes starting

at Ptr2. Zero is not a valid Size.

File Management

Command Description

GetCalc(PTR)
Finds the object who's name is pointed to and returns a pointer to the start

of its data, or zero if it was archived or not found.

GetCalc(PTR,SIZE)

Creates an application variable in RAM, with the name pointed to, and

makes it Size bytes. Returns a pointer to the start of data, or zero if there

was not enough RAM. Overwrites existing appvar, even if it was in

archive.

Unarchive PTR

Tries to unarchive the object who's name is pointed to. Returns 1 if it

could unarchive and 0 otherwise. Gives a memory error if not enough

RAM.

Archive PTR

Tries to archive the object who's name is pointed to. Returns 1 if it could

archive and 0 otherwise. Gives a memory error if not enough Flash

Memory.

Documentation for Axe Parser
Copyright (c) 2010 Kevin Horowitz

New In This Version

Changed From Last Version

Existing Command

