Author Topic: Vertical Text Sprites  (Read 13379 times)

0 Members and 1 Guest are viewing this topic.

Offline Builderboy

  • Physics Guru
  • CoT Emeritus
  • LV13 Extreme Addict (Next: 9001)
  • *
  • Posts: 5673
  • Rating: +613/-9
  • Would you kindly?
    • View Profile
Re: Vertical Text Sprites
« Reply #15 on: May 30, 2010, 01:03:35 am »
then you are either out of luck, or you would have to use some sort of trickery to first make the sprite with or without a critical pixel and then switch it on or off afterwards, if that makes sense

Offline ztrumpet

  • The Rarely Active One
  • CoT Emeritus
  • LV13 Extreme Addict (Next: 9001)
  • *
  • Posts: 5712
  • Rating: +364/-4
  • If you see this, send me a PM. Just for fun.
    • View Profile
Re: Vertical Text Sprites
« Reply #16 on: July 13, 2011, 10:27:44 am »
Update:
If appears that weregoose's site is down right now, so I'm putting a copy of his table in the post so it doesn't get lost to time.

Spoiler For Massive:
Quote
Hex Token Character Decomposition Bottom Row of Pixels
0000 (unused) (unused) (unused)
0001 ►DMS 05-44-4D-53 1000110010101100
0002 ►Dec 05-44-65-63 1000110001100110
0003 ►Frac 05-46-72-61-63 10001000100001100110
0004 → 1C 01000
0005 Boxplot 42-6F-78-70-6C-6F-74 11000100101010000100100010
0006 [ C1 110
0007 ] 5D 110
0008 { 7B 0110
0009 } 7D 1100
000A r 15 00000
000B ° 14 00000
000C ‾¹ 11 00000
000D ² 12 0000
000E т 16 0000
000F ³ D5 0000
0010 ( 28 010
0011 ) 29 100
0012 round( 72-6F-75-6E-64-28 10000100111010100110010
0013 pxl-Test( 70-78-6C-2D-54-65-73-74-28 10001010010000001000110110010010
0014 augment( 61-75-67-6D-65-6E-74-28 01101110110010001001101010010010
0015 rowSwap( 72-6F-77-53-77-61-70-28 10000100010100110001010001101000010
0016 row+( 72-6F-77-2B-28 100001000101000000010
0017 *row( 2A-72-6F-77-28 00100010000100010100010
0018 *row+( 2A-72-6F-77-2B-28 001000100001000101000000010
0019 max( 6D-61-78-28 10001001101010010
001A min( 6D-69-6E-28 100010101010010
001B R►Pr( 52-05-50-72-28 1010100010001000010
001C R►Pθ( 52-05-50-5B-28 1010100010000100010
001D P►Rx( 50-05-52-78-28 1000100010101010010
001E P►Ry( 50-05-52-79-28 1000100010101000010
001F median( 6D-65-64-69-61-6E-28 100010011001101001101010010
0020 randM( 72-61-6E-64-4D-28 10000110101001101010010
0021 mean( 6D-65-61-6E-28 100010011001101010010
0022 solve( 73-6F-6C-76-65-28 110010001001000110010
0023 seq( 73-65-71-28 11001100010010
0024 fnInt( 66-6E-49-6E-74-28 100101011101010010010
0025 nDeriv( 6E-44-65-72-69-76-28 1010110001101000100100010
0026 (unused) (unused) (unused)
0027 fMin( 66-4D-69-6E-28 1001010101010010
0028 fMax( 66-4D-61-78-28 100101001101010010
0029 (space) 20 0
002A " 22 0000
002B , 2C 100
002C i D7 1100
002D ! 21 10
002E CubicReg 43-75-62-69-63-52-65-67 011011101100100110101001101100
002F QuartReg 51-75-61-72-74-52-65-67 0110111001101000010101001101100
0030 0 30 0100
0031 1 31 1110
0032 2 32 1110
0033 3 33 1100
0034 4 34 0010
0035 5 35 1100
0036 6 36 1110
0037 7 37 1000
0038 8 38 1110
0039 9 39 1100
003A . 2E 10
003B E 1B 1110
003C or 6F-72 01001000
003D xor 78-6F-72 101001001000
003E : 3A 00
003F (newline) (unused) (unused)
0040 and 61-6E-64 011010100110
0041 A 41 1010
0042 B 42 1100
0043 C 43 0110
0044 D 44 1100
0045 E 45 1110
0046 F 46 1000
0047 G 47 0110
0048 H 48 1010
0049 I 49 1110
004A J 4A 1110
004B K 4B 1010
004C L 4C 1110
004D M 4D 1010
004E N 4E 1010
004F O 4F 1110
0050 P 50 1000
0051 Q 51 0110
0052 R 52 1010
0053 S 53 1100
0054 T 54 0100
0055 U 55 1110
0056 V 56 0100
0057 W 57 1010
0058 X 58 1010
0059 Y 59 0100
005A Z 5A 1110
005B θ 5B 0100
5C00 [A] C1-41-5D 1101010110
5C01 [B] C1-42-5D 1101100110
5C02 [C] C1-43-5D 1100110110
5C03 [D] C1-44-5D 1101100110
5C04 [E] C1-45-5D 1101110110
5C05 [F] C1-46-5D 1101000110
5C06 [G] C1-47-5D 1100110110
5C07 [H] C1-48-5D 1101010110
5C08 [I] C1-49-5D 1101110110
5C09 [J] C1-4A-5D 1101110110
5D00 L1 4C-81 1110010
5D01 L2 4C-82 11101110
5D02 L3 4C-83 11101100
5D03 L4 4C-84 11100010
5D04 L5 4C-85 11101100
5D05 L6 4C-86 11101110
5E10 Y1 59-81 0100010
5E11 Y2 59-82 01001110
5E12 Y3 59-83 01001100
5E13 Y4 59-84 01000010
5E14 Y5 59-85 01001100
5E15 Y6 59-86 01001110
5E16 Y7 59-87 01001000
5E17 Y8 59-88 01001110
5E18 Y9 59-89 01001100
5E19 Y0 59-80 01001110
5E20 X1т 58-81-0D 10100100100
5E21 X2т 58-82-0D 101011100100
5E22 X3т 58-83-0D 101011000100
5E23 X4т 58-84-0D 101000100100
5E24 X5т 58-85-0D 101011000100
5E25 X6т 58-86-0D 101011100100
5E26 Y1т 59-81-0D 01000100100
5E27 Y2т 59-82-0D 010011100100
5E28 Y3т 59-83-0D 010011000100
5E29 Y4т 59-84-0D 010000100100
5E2A Y5т 59-85-0D 010011000100
5E2B Y6т 59-86-0D 010011100100
5E40 r1 72-81 1000010
5E41 r2 72-82 10001110
5E42 r3 72-83 10001100
5E43 r4 72-84 10000010
5E44 r5 72-85 10001100
5E45 r6 72-86 10001110
5E80 u 75 1110
5E81 v 76 0100
5E82 w 77 010100
005F prgm 70-72-67-6D 100010001100100010
6000 Pic1 50-69-63-31 10001001101110
6001 Pic2 50-69-63-32 10001001101110
6002 Pic3 50-69-63-33 10001001101100
6003 Pic4 50-69-63-34 10001001100010
6004 Pic5 50-69-63-35 10001001101100
6005 Pic6 50-69-63-36 10001001101110
6006 Pic7 50-69-63-37 10001001101000
6007 Pic8 50-69-63-38 10001001101110
6008 Pic9 50-69-63-39 10001001101100
6009 Pic0 50-69-63-30 10001001100100
6100 GDB1 47-44-42-31 0110110011001110
6101 GDB2 47-44-42-32 0110110011001110
6102 GDB3 47-44-42-33 0110110011001100
6103 GDB4 47-44-42-34 0110110011000010
6104 GDB5 47-44-42-35 0110110011001100
6105 GDB6 47-44-42-36 0110110011001110
6106 GDB7 47-44-42-37 0110110011001000
6107 GDB8 47-44-42-38 0110110011001110
6108 GDB9 47-44-42-39 0110110011001100
6109 GDB0 47-44-42-30 0110110011000100
6201 RegEQ 52-65-67-45-51 10100110110011100110
6202 n 6E 1010
6203 CB 1010
6204 Σx C6-78 111101010
6205 Σx² C6-78-12 1111010100000
6206 Sx 53-78 11001010
6207 σx C7-78 010001010
6208 minX 6D-69-6E-58 1000101010101010
6209 maxX 6D-61-78-58 100010011010101010
620A minY 6D-69-6E-59 1000101010100100
620B maxY 6D-61-78-59 100010011010100100
620C CC 1000
620D Σy C6-79 111101000
620E Σy² C6-79-12 1111010000000
620F Sy 53-79 11001000
6210 σy C7-79 010001000
6211 Σxy C6-78-79 1111010101000
6212 r 72 1000
6213 Med 4D-65-64 101001100110
6214 Q1 51-81 0110010
6215 Q3 51-83 01101100
6216 a 61 0110
6217 b 62 1100
6218 c 63 0110
6219 d 64 0110
621A e 65 0110
621B x1 78-81 1010010
621C x2 78-82 10101110
621D x3 78-83 10101100
621E y1 79-81 1000010
621F y2 79-82 10001110
6220 y3 79-83 10001100
6221 n 01 100100
6222 p 70 1000
6223 z 7A 11110
6224 t 74 010
6225 χ² D9-12 00100000
6226 F DA 1000
6227 df 64-66 0110100
6228 D8 1000
6229 1 D8-81 1000010
622A 2 D8-82 10001110
622B 1 CB-81 1010010
622C Sx1 53-78-81 11001010010
622D n1 6E-81 1010010
622E 2 CB-82 10101110
622F Sx2 53-78-82 110010101110
6230 n2 6E-82 10101110
6231 Sxp 53-78-70 110010101000
6232 lower 6C-6F-77-65-72 010010001010001101000
6233 upper 75-70-70-65-72 11101000100001101000
6234 s 73 110
6235 r² 72-12 10000000
6236 R² 52-12 10100000
6237 df 64-66 0110100
6238 SS 53-53 11001100
6239 MS 4D-53 10101100
623A df 64-66 0110100
623B SS 53-53 11001100
623C MS 4D-53 10101100
6300 ZXscl 5A-58-73-63-6C 111010101100110010
6301 ZYscl 5A-59-73-63-6C 111001001100110010
6302 Xscl 58-73-63-6C 10101100110010
6303 Yscl 59-73-63-6C 01001100110010
6304 u(nMin) 75-28-01-4D-69-6E-29 11100101001001010101010100
6305 v(nMin) 76-28-01-4D-69-6E-29 01000101001001010101010100
6306 Un−1 55-01-2D-81 11101001000000010
6307 Vn−1 56-01-2D-81 01001001000000010
6308 Zu(nMin) 5A-75-28-01-4D-69-6E-29 111011100101001001010101010100
6309 Zv(nMin) 5A-76-28-01-4D-69-6E-29 111001000101001001010101010100
630A Xmin 58-6D-69-6E 1010100010101010
630B Xmax 58-6D-61-78 101010001001101010
630C Ymin 59-6D-69-6E 0100100010101010
630D Ymax 59-6D-61-78 010010001001101010
630E Tmin 54-6D-69-6E 0100100010101010
630F Tmax 54-6D-61-78 010010001001101010
6310 θmin 5B-6D-69-6E 0100100010101010
6311 θmax 5B-6D-61-78 010010001001101010
6312 ZXmin 5A-58-6D-69-6E 11101010100010101010
6313 ZXmax 5A-58-6D-61-78 1110101010001001101010
6314 ZYmin 5A-59-6D-69-6E 11100100100010101010
6315 ZYmax 5A-59-6D-61-78 1110010010001001101010
6316 Zθmin 5A-5B-6D-69-6E 11100100100010101010
6317 Zθmax 5A-5B-6D-61-78 1110010010001001101010
6318 ZTmin 5A-54-6D-69-6E 11100100100010101010
6319 ZTmax 5A-54-6D-61-78 1110010010001001101010
631A TblStart 54-62-6C-53-74-61-72-74 01001100010110001001101000010
631B PlotStart 50-6C-6F-74-53-74-61-72-74 10000100100010110001001101000010
631C ZPlotStart 5A-50-6C-6F-74-53-74-61-72-74 111010000100100010110001001101000010
631D nMax 01-4D-61-78 100100101001101010
631E ZnMax 5A-01-4D-61-78 1110100100101001101010
631F nMin 01-4D-69-6E 1001001010101010
6320 ZnMin 5A-01-4D-69-6E 11101001001010101010
6321 ΔTbl BE-54-62-6C 11111001001100010
6322 Tstep 54-73-74-65-70 010011001001101000
6323 θstep 5B-73-74-65-70 010011001001101000
6324 ZTstep 5A-54-73-74-65-70 1110010011001001101000
6325 Zθstep 5A-5B-73-74-65-70 1110010011001001101000
6326 ΔX BE-58 1111101010
6327 ΔY BE-59 1111100100
6328 XFact 58-46-61-63-74 1010100001100110010
6329 YFact 59-46-61-63-74 0100100001100110010
632A TblInput 54-62-6C-49-6E-70-75-74 010011000101110101010001110010
632B N DD 101
632C I% 49-25 11101010
632D PV 50-56 10000100
632E PMT 50-4D-54 100010100100
632F FV 46-56 10000100
6330 P/Y 50-2F-59 100010000100
6331 C/Y 43-2F-59 011010000100
6332 w(nMin) 77-28-01-4D-69-6E-29 0101000101001001010101010100
6333 Zw(nMin) 5A-77-28-01-4D-69-6E-29 11100101000101001001010101010100
6334 PlotStep 50-6C-6F-74-53-74-65-70 10000100100010110001001101000
6335 ZPlotStep 5A-50-6C-6F-74-53-74-65-70 111010000100100010110001001101000
6336 Xres 58-72-65-73 101010000110110
6337 ZXres 5A-58-72-65-73 1110101010000110110
0064 Radian 52-61-64-69-61-6E 1010011001101001101010
0065 Degree 44-65-67-72-65-65 110001101100100001100110
0066 Normal 4E-6F-72-6D-61-6C 1010010010001000100110010
0067 Sci 53-63-69 1100011010
0068 Eng 45-6E-67 111010101100
0069 Float 46-6C-6F-61-74 100001001000110010
006A = 3D 0000
006B < 3C 0010
006C > 3E 1000
006D ≤ 17 11110
006E ≥ 19 11110
006F ≠ 18 010000
0070 + 2B 0000
0071 − 2D 0000
0072 Ans 41-6E-73 10101010110
0073 Fix 46-69-78 1000101010
0074 Horiz 48-6F-72-69-7A 1010010010001011110
0075 Full 46-75-6C-6C 10001110010010
0076 Func 46-75-6E-63 1000111010100110
0077 Param 50-61-72-61-6D 1000011010000110100010
0078 Polar 50-6F-6C-61-72 1000010001001101000
0079 Seq 53-65-71 110001100010
007A IndpntAuto 49-6E-64-70-6E-74-41-75-74-6F 11101010011010001010010101011100100100
007B IndpntAsk 49-6E-64-70-6E-74-41-73-6B 1110101001101000101001010101101010
007C DependAuto 44-65-70-65-6E-64-41-75-74-6F 110001101000011010100110101011100100100
007D DependAsk 44-65-70-65-6E-64-41-73-6B 11000110100001101010011010101101010
7E00 Sequential 53-65-71-75-65-6E-74-69-61-6C 110001100010111001101010010100110010
7E01 Simul 53-69-6D-75-6C 1100101000101110010
7E02 PolarGC 50-6F-6C-61-72-47-43 100001000100110100001100110
7E03 RectGC 52-65-63-74-47-43 10100110011001001100110
7E04 CoordOn 43-6F-6F-72-64-4F-6E 0110010001001000011011101010
7E05 CoordOff 43-6F-6F-72-64-4F-66-66 011001000100100001101110100100
7E06 Connected 43-6F-6E-6E-65-63-74-65-64 01100100101010100110011001001100110
7E07 Dot 44-6F-74 11000100010
7E08 AxesOn 41-78-65-73-4F-6E 10101010011011011101010
7E09 AxesOff 41-78-65-73-4F-66-66 1010101001101101110100100
7E0A GridOn 47-72-69-64-4F-6E 0110100010011011101010
7E0B GridOff 47-72-69-64-4F-66-66 011010001001101110100100
7E0C LabelOn 4C-61-62-65-6C-4F-6E 111001101100011001011101010
7E0D LabelOff 4C-61-62-65-6C-4F-66-66 11100110110001100101110100100
7E0E Web 57-65-62 101001101100
7E0F Time 54-69-6D-65 0100101000100110
7E10 uvAxes 75-76-41-78-65-73 11100100101010100110110
7E11 vwAxes 76-77-41-78-65-73 0100010100101010100110110
7E12 uwAxes 75-77-41-78-65-73 1110010100101010100110110
007F ▫ 0A 1110
0080 + 0B 0100
0081 · 0C 0000
0082 * 2A 001000
0083 / 2F 1000
0084 Trace 54-72-61-63-65 01001000011001100110
0085 ClrDraw 43-6C-72-44-72-61-77 01100101000110010000110010100
0086 ZStandard 5A-53-74-61-6E-64-61-72-64 11101100010011010100110011010000110
0087 ZTrig 5A-54-72-69-67 111001001000101100
0088 ZBox 5A-42-6F-78 1110110001001010
0089 Zoom In 5A-6F-6F-6D-20-49-6E 111001000100100010011101010
008A Zoom Out 5A-6F-6F-6D-20-4F-75-74 111001000100100010011101110010
008B ZSquare 5A-53-71-75-61-72-65 1110110000101110011010000110
008C ZInteger 5A-49-6E-74-65-67-65-72 1110111010100100110110001101000
008D ZPrevious 5A-50-72-65-76-69-6F-75-73 111010001000011001001001001110110
008E ZDecimal 5A-44-65-63-69-6D-61-6C 1110110001100110101000100110010
008F ZoomStat 5A-6F-6F-6D-53-74-61-74 11100100010010001011000100110010
0090 ZoomRcl 5A-6F-6F-6D-52-63-6C 11100100010010001010100110010
0091 PrintScreen 50-72-69-6E-74-53-63-72-65-65-6E 10001000101010010110001101000011001101010
0092 ZoomSto 5A-6F-6F-6D-53-74-6F 11100100010010001011000100100
0093 Text( 54-65-78-74-28 010001101010010010
0094 nPr 6E-50-72 101010001000
0095 nCr 6E-43-72 101001101000
0096 FnOn 46-6E-4F-6E 1000101011101010
0097 FnOff 46-6E-4F-66-66 100010101110100100
0098 StorePic 53-74-6F-72-65-50-69-63 11000100100100001101000100110
0099 RecallPic 52-65-63-61-6C-6C-50-69-63 10100110011001100100101000100110
009A StoreGDB 53-74-6F-72-65-47-44-42 1100010010010000110011011001100
009B RecallGDB 52-65-63-61-6C-6C-47-44-42 1010011001100110010010011011001100
009C Line( 4C-69-6E-65-28 11101010100110010
009D Vertical 56-65-72-74-69-63-61-6C 0100011010000101001100110010
009E Pt-On( 50-74-2D-4F-6E-28 1000010000011101010010
009F Pt-Off( 50-74-2D-4F-66-66-28 100001000001110100100010
00A0 Pt-Change( 50-74-2D-43-68-61-6E-67-65-28 10000100000011010100110101011000110010
00A1 Pxl-On( 50-78-6C-2D-4F-6E-28 10001010010000011101010010
00A2 Pxl-Off( 50-78-6C-2D-4F-66-66-28 1000101001000001110100100010
00A3 Pxl-Change( 50-78-6C-2D-43-68-61-6E-67-65-28 100010100100000011010100110101011000110010
00A4 Shade( 53-68-61-64-65-28 11001010011001100110010
00A5 Circle( 43-69-72-63-6C-65-28 011010100001100100110010
00A6 Horizontal 48-6F-72-69-7A-6F-6E-74-61-6C 1010010010001011110010010100100110010
00A7 Tangent( 54-61-6E-67-65-6E-74-28 010001101010110001101010010010
00A8 DrawInv 44-72-61-77-49-6E-76 110010000110010100111010100100
00A9 DrawF 44-72-61-77-46 1100100001100101001000
AA00 Str1 53-74-72-31 110001010001110
AA01 Str2 53-74-72-32 110001010001110
AA02 Str3 53-74-72-33 110001010001100
AA03 Str4 53-74-72-34 110001010000010
AA04 Str5 53-74-72-35 110001010001100
AA05 Str6 53-74-72-36 110001010001110
AA06 Str7 53-74-72-37 110001010001000
AA07 Str8 53-74-72-38 110001010001110
AA08 Str9 53-74-72-39 110001010001100
AA09 Str0 53-74-72-30 110001010000100
00AB rand 72-61-6E-64 1000011010100110
00AC π C4 010100
00AD getKey 67-65-74-4B-65-79 11000110010101001101000
00AE ' 27 00
00AF ? 3F 0100
00B0 ‾ 1A 0000
00B1 int( 69-6E-74-28 101010010010
00B2 abs( 61-62-73-28 01101100110010
00B3 det( 64-65-74-28 01100110010010
00B4 identity( 69-64-65-6E-74-69-74-79-28 10011001101010010100101000010
00B5 dim( 64-69-6D-28 011010100010010
00B6 sum( 73-75-6D-28 1101110100010010
00B7 prod( 70-72-6F-64-28 1000100001000110010
00B8 not( 6E-6F-74-28 10100100010010
00B9 iPart( 69-50-61-72-74-28 10100001101000010010
00BA fPart( 66-50-61-72-74-28 100100001101000010010
BB00 npv( 6E-70-76-28 101010000100010
BB01 irr( 69-72-72-28 1010001000010
BB02 bal( 62-61-6C-28 11000110010010
BB03 ΣPrn( C6-50-72-6E-28 11110100010001010010
BB04 ΣInt( C6-49-6E-74-28 1111011101010010010
BB05 ►Nom( 05-4E-6F-6D-28 100010100100100010010
BB06 ►Eff( 05-45-66-66-28 10001110100100010
BB07 dbd( 64-62-64-28 011011000110010
BB08 lcm( 6C-63-6D-28 0100110100010010
BB09 gcd( 67-63-64-28 110001100110010
BB0A randInt( 72-61-6E-64-49-6E-74-28 100001101010011011101010010010
BB0B randBin( 72-61-6E-64-42-69-6E-28 10000110101001101100101010010
BB0C sub( 73-75-62-28 11011101100010
BB0D stdDev( 73-74-64-44-65-76-28 1100100110110001100100010
BB0E variance( 76-61-72-69-61-6E-63-65-28 010001101000100110101001100110010
BB0F inString( 69-6E-53-74-72-69-6E-67-28 101010110001010001010101100010
BB10 normalcdf( 6E-6F-72-6D-61-6C-63-64-66-28 101001001000100010011001001100110100010
BB11 invNorm( 69-6E-76-4E-6F-72-6D-28 1010100100101001001000100010010
BB12 tcdf( 74-63-64-66-28 01001100110100010
BB13 χ²cdf( D9-12-63-64-66-28 0010000001100110100010
BB14 Fcdf( DA-63-64-66-28 100001100110100010
BB15 binompdf( 62-69-6E-6F-6D-70-64-66-28 1100101010010010001010000110100010
BB16 binomcdf( 62-69-6E-6F-6D-63-64-66-28 1100101010010010001001100110100010
BB17 poissonpdf( 70-6F-69-73-73-6F-6E-70-64-66-28 10000100101101100100101010000110100010
BB18 poissoncdf( 70-6F-69-73-73-6F-6E-63-64-66-28 10000100101101100100101001100110100010
BB19 geometpdf( 67-65-6F-6D-65-74-70-64-66-28 110001100100100010011001010000110100010
BB1A geometcdf( 67-65-6F-6D-65-74-63-64-66-28 110001100100100010011001001100110100010
BB1B normalpdf( 6E-6F-72-6D-61-6C-70-64-66-28 101001001000100010011001010000110100010
BB1C tpdf( 74-70-64-66-28 01010000110100010
BB1D χ²pdf( D9-12-70-64-66-28 0010000010000110100010
BB1E Fpdf( DA-70-64-66-28 100010000110100010
BB1F randNorm( 72-61-6E-64-4E-6F-72-6D-28 1000011010100110101001001000100010010
BB20 tvm_Pmt( 74-76-6D-5F-50-6D-74-28 010010010001011101000100010010010
BB21 tvm_I% 74-76-6D-5F-49-25 0100100100010111011101010
BB22 tvm_PV 74-76-6D-5F-50-56 0100100100010111010000100
BB23 tvm_N 74-76-6D-5F-4E 010010010001011101010
BB24 tvm_FV 74-76-6D-5F-46-56 0100100100010111010000100
BB25 conj( 63-6F-6E-6A-28 0110010010100100010
BB26 real( 72-65-61-6C-28 100001100110010010
BB27 imag( 69-6D-61-67-28 1010001001101100010
BB28 angle( 61-6E-67-6C-65-28 0110101011000100110010
BB29 cumSum( 63-75-6D-53-75-6D-28 0110111010001011001110100010010
BB2A expr( 65-78-70-72-28 0110101010001000010
BB2B length( 6C-65-6E-67-74-68-28 0100110101011000101010010
BB2C ΔList( BE-4C-69-73-74-28 111110111010110010010
BB2D ref( 72-65-66-28 10000110100010
BB2E rref( 72-72-65-66-28 100010000110100010
BB2F ►Rect 05-52-65-63-74 1000101001100110010
BB30 ►Polar 05-50-6F-6C-61-72 10001000010001001101000
BB31 e DB 0110
BB32 SinReg 53-69-6E-52-65-67 1100101010101001101100
BB33 Logistic 4C-6F-67-69-73-74-69-63 11100100110010110010100110
BB34 LinRegTTest 4C-69-6E-52-65-67-54-54-65-73-74 1110101010101001101100010001000110110010
BB35 ShadeNorm( 53-68-61-64-65-4E-6F-72-6D-28 11001010011001100110101001001000100010010
BB36 Shade_t( 53-68-61-64-65-5F-74-28 110010100110011001101110010010
BB37 Shadeχ²( 53-68-61-64-65-D9-12-28 1100101001100110011000100000010
BB38 ShadeF( 53-68-61-64-65-DA-28 110010100110011001101000010
BB39 Matr►list( 4D-61-74-72-05-6C-69-73-74-28 101001100101000100001010110010010
BB3A List►matr( 4C-69-73-74-05-6D-61-74-72-28 111010110010100010001001100101000010
BB3B Z-Test( 5A-2D-54-65-73-74-28 1110000001000110110010010
BB3C T-Test 54-2D-54-65-73-74 0100000001000110110010
BB3D 2-SampZTest( 32-2D-53-61-6D-70-5A-54-65-73-74-28 11100000110001101000101000111001000110110010010
BB3E 1-PropZTest( 31-2D-50-72-6F-70-5A-54-65-73-74-28 111000001000100001001000111001000110110010010
BB3F 2-PropZTest( 32-2D-50-72-6F-70-5A-54-65-73-74-28 111000001000100001001000111001000110110010010
BB40 χ²-Test( D9-12-2D-54-65-73-74-28 00100000000001000110110010010
BB41 ZInterval 5A-49-6E-74-65-72-76-61-6C 1110111010100100110100001000110010
BB42 2-SampZInt( 32-2D-53-61-6D-70-5A-49-6E-74-28 11100000110001101000101000111011101010010010
BB43 1-PropZInt( 31-2D-50-72-6F-70-5A-49-6E-74-28 111000001000100001001000111011101010010010
BB44 2-PropZInt( 32-2D-50-72-6F-70-5A-49-6E-74-28 111000001000100001001000111011101010010010
BB45 GraphStyle( 47-72-61-70-68-53-74-79-6C-65-28 01101000011010001010110001010000100110010
BB46 2-SampTTest 32-2D-53-61-6D-70-54-54-65-73-74 11100000110001101000101000010001000110110010
BB47 2-SampFTest 32-2D-53-61-6D-70-DA-54-65-73-74 11100000110001101000101000100001000110110010
BB48 TInterval 54-49-6E-74-65-72-76-61-6C 0100111010100100110100001000110010
BB49 2-SampTInt 32-2D-53-61-6D-70-54-49-6E-74 11100000110001101000101000010011101010010
BB4A SetUpEditor 53-65-74-55-70-45-64-69-74-6F-72 1100011001011101000111001101001001001000
BB4B Pmt_End 50-6D-74-5F-45-6E-64 10001000100101110111010100110
BB4C Pmt_Bgn 50-6D-74-5F-42-67-6E 10001000100101110110011001010
BB4D Real 52-65-61-6C 101001100110010
BB4E re^θi 72-DB-5E-5B-D7 10000110000001001100
BB4F a+bi 61-2B-62-D7 0110000011001100
BB50 ExprOn 45-78-70-72-4F-6E 111010101000100011101010
BB51 ExprOff 45-78-70-72-4F-66-66 11101010100010001110100100
BB52 ClrAllLists 43-6C-72-41-6C-6C-4C-69-73-74-73 011001010001010010010111010110010110
BB53 GetCalc( 47-65-74-43-61-6C-63-28 01100110010011001100100110010
BB54 DelVar 44-65-6C-56-61-72 11000110010010001101000
BB55 Equ►String( 45-71-75-05-53-74-72-69-6E-67-28 1110001011101000110001010001010101100010
BB56 String►Equ( 53-74-72-69-6E-67-05-45-71-75-28 1100010100010101011001000111000101110010
BB57 Clear Entries 43-6C-65-61-72-20-45-6E-74-72-69-65-73 01100100110011010000111010100101000100110110
BB58 Select( 53-65-6C-65-63-74-28 1100011001001100110010010
BB59 ANOVA( 41-4E-4F-56-41-28 10101010111001001010010
BB5A ModBoxplot 4D-6F-64-42-6F-78-70-6C-6F-74 10100100011011000100101010000100100010
BB5B NormProbPlot 4E-6F-72-6D-50-72-6F-62-50-6C-6F-74 101001001000100010100010000100110010000100100010
BB5C (unused) (unused) (unused)
BB5D (unused) (unused) (unused)
BB5E (unused) (unused) (unused)
BB5F (unused) (unused) (unused)
BB60 (unused) (unused) (unused)
BB61 (unused) (unused) (unused)
BB62 (unused) (unused) (unused)
BB63 (unused) (unused) (unused)
BB64 G-T 47-2D-54 011000000100
BB65 ZoomFit 5A-6F-6F-6D-46-69-74 111001000100100010100010010
BB66 DiagnosticOn 44-69-61-67-6E-6F-73-74-69-63-4F-6E 110010011011001010010011001010011011101010
BB67 DiagnosticOff 44-69-61-67-6E-6F-73-74-69-63-4F-66-66 11001001101100101001001100101001101110100100
BB68 Archive 41-72-63-68-69-76-65 10101000011010101001000110
BB69 UnArchive 55-6E-41-72-63-68-69-76-65 1110101010101000011010101001000110
BB6A Asm( 41-73-6D-28 1010110100010010
BB6B AsmComp( 41-73-6D-43-6F-6D-70-28 1010110100010011001001000101000010
BB6C AsmPrgm 41-73-6D-50-72-67-6D 1010110100010100010001100100010
BB6D (unused) (unused) (unused)
BB6E Á 8A 10010
BB6F À 8B 10010
BB70 Â 8C 10010
BB71 Ä 8D 10010
BB72 á 8E 01010
BB73 à 8F 01010
BB74 â 90 01010
BB75 ä 91 01010
BB76 É 92 01110
BB77 È 93 11100
BB78 Ê 94 1110
BB79 Ë 95 1110
BB7A é 96 0110
BB7B è 97 0110
BB7C ê 98 0110
BB7D ë 99 0110
BB7E (unused) (unused) (unused)
BB7F Ì 9B 1110
BB80 Î 9C 1110
BB81 Ï 9D 1110
BB82 í 9E 1110
BB83 ì 9F 1110
BB84 î A0 1110
BB85 ï A1 1110
BB86 Ó A2 011100
BB87 Ò A3 011100
BB88 Ô A4 011100
BB89 Ö A5 011100
BB8A ó A6 011100
BB8B ò A7 011100
BB8C ô A8 011100
BB8D ö A9 011100
BB8E Ú AA 1110
BB8F Ù AB 1110
BB90 Û AC 1110
BB91 Ü AD 1110
BB92 ú AE 01010
BB93 ù AF 01010
BB94 û B0 01010
BB95 ü B1 01010
BB96 Ç B2 1100
BB97 ç B3 1100
BB98 Ñ B4 10010
BB99 ñ B5 10010
BB9A ´ B6 000
BB9B ` B7 000
BB9C ¨ B8 0000
BB9D ¿ B9 0110
BB9E ¡ BA 10
BB9F α BB 01010
BBA0 β BC 1100
BBA1 γ BD 00100
BBA2 Δ BE 111110
BBA3 δ BF 0100
BBA4 ε C0 0110
BBA5 λ C2 1010
BBA6 μ C3 10000
BBA7 π C4 010100
BBA8 ρ C5 10000
BBA9 Σ C6 11110
BBAA (unused) (unused) (unused)
BBAB φ C9 001000
BBAC Ω CA 110110
BBAD D8 1000
BBAE χ D9 0010
BBAF F DA 1000
BBB0 a 61 0110
BBB1 b 62 1100
BBB2 c 63 0110
BBB3 d 64 0110
BBB4 e 65 0110
BBB5 f 66 100
BBB6 g 67 1100
BBB7 h 68 1010
BBB8 i 69 10
BBB9 j 6A 0100
BBBA k 6B 1010
BBBB (unused) (unused) (unused)
BBBC l 6C 010
BBBD m 6D 100010
BBBE n 6E 1010
BBBF o 6F 0100
BBC0 p 70 1000
BBC1 q 71 0010
BBC2 r 72 1000
BBC3 s 73 110
BBC4 t 74 010
BBC5 u 75 1110
BBC6 v 76 0100
BBC7 w 77 010100
BBC8 x 78 1010
BBC9 y 79 1000
BBCA z 7A 11110
BBCB σ C7 01000
BBCC τ C8 00100
BBCD Í 9A 1110
BBCE GarbageCollect 47-61-72-62-61-67-65-43-6F-6C-6C-65-63-74 01100110100011000110110001100110010001001001100110010
BBCF ~ 7E 00000
BBD0 (unused) (unused) (unused)
BBD1 @ 40 011100
BBD2 # 23 010100
BBD3 $ 24 111100
BBD4 & 26 01010
BBD5 ‘ 60 000
BBD6 ; 3B 100
BBD7 \ 5C 0010
BBD8 | 7C 10
BBD9 _ 5F 1110
BBDA % 25 1010
BBDB … CE 111
BBDC 13 1110
BBDD ß F4 10100
BBDE × CD 0000
BBDF т 0D 0100
BBE0 0 80 1110
BBE1 1 81 010
BBE2 2 82 1110
BBE3 3 83 1100
BBE4 4 84 0010
BBE5 5 85 1100
BBE6 6 86 1110
BBE7 7 87 1000
BBE8 8 88 1110
BBE9 9 89 1100
BBEA 10 1D 101110
BBEB ◄ CF 0010
BBEC ► 05 1000
BBED ↑ 1E 0100
BBEE ↓ 1F 0100
BBEF (unused) (unused) (unused)
BBF0 × 09 0000
BBF1 ∫ 08 1000
BBF2 F3 00000
BBF3 07 00100
BBF4 √ 10 0100
BBF5 7F 1110
00BC √( 10-28 0100010
00BD ³√( 0E-10-28 00000100010
00BE ln( 6C-6E-28 0101010010
00BF e^( DB-5E-28 01100000010
00C0 log( 6C-6F-67-28 01001001100010
00C1 10^( 1D-5E-28 1011100000010
00C2 sin( 73-69-6E-28 110101010010
00C3 sin‾¹( 73-69-6E-11-28 11010101000000010
00C4 cos( 63-6F-73-28 01100100110010
00C5 cos‾¹( 63-6F-73-11-28 0110010011000000010
00C6 tan( 74-61-6E-28 01001101010010
00C7 tan‾¹( 74-61-6E-11-28 0100110101000000010
00C8 sinh( 73-69-6E-68-28 1101010101010010
00C9 sinh‾¹( 73-69-6E-68-11-28 110101010101000000010
00CA cosh( 63-6F-73-68-28 011001001101010010
00CB cosh‾¹( 63-6F-73-68-11-28 01100100110101000000010
00CC tanh( 74-61-6E-68-28 010011010101010010
00CD tanh‾¹( 74-61-6E-68-11-28 01001101010101000000010
00CE If 49-66 1110100
00CF Then 54-68-65-6E 0100101001101010
00D0 Else 45-6C-73-65 11100101100110
00D1 While 57-68-69-6C-65 10101010100100110
00D2 Repeat 52-65-70-65-61-74 10100110100001100110010
00D3 For( 46-6F-72-28 100001001000010
00D4 End 45-6E-64 111010100110
00D5 Return 52-65-74-75-72-6E 10100110010111010001010
00D6 Lbl 4C-62-6C 11101100010
00D7 Goto 47-6F-74-6F 011001000100100
00D8 Pause 50-61-75-73-65 1000011011101100110
00D9 Stop 53-74-6F-70 110001001001000
00DA IS>( 49-53-3E-28 111011001000010
00DB DS<( 44-53-3C-28 110011000010010
00DC Input 49-6E-70-75-74 1110101010001110010
00DD Prompt 50-72-6F-6D-70-74 1000100001001000101000010
00DE Disp 44-69-73-70 1100101101000
00DF DispGraph 44-69-73-70-47-72-61-70-68 110010110100001101000011010001010
00E0 Output( 4F-75-74-70-75-74-28 1110111001010001110010010
00E1 ClrHome 43-6C-72-48-6F-6D-65 01100101000101001001000100110
00E2 Fill( 46-69-6C-6C-28 100010010010010
00E3 SortA( 53-6F-72-74-41-28 1100010010000101010010
00E4 SortD( 53-6F-72-74-44-28 1100010010000101100010
00E5 DispTable 44-69-73-70-54-61-62-6C-65 11001011010000100011011000100110
00E6 Menu( 4D-65-6E-75-28 1010011010101110010
00E7 Send( 53-65-6E-64-28 1100011010100110010
00E8 Get( 47-65-74-28 01100110010010
00E9 PlotsOn( 50-6C-6F-74-73-4F-6E-28 1000010010001011011101010010
00EA PlotsOff( 50-6C-6F-74-73-4F-66-66-28 100001001000101101110100100010
00EB L DC 111
00EC Plot1( 50-6C-6F-74-31-28 100001001000101110010
00ED Plot2( 50-6C-6F-74-32-28 100001001000101110010
00EE Plot3( 50-6C-6F-74-33-28 100001001000101100010
00EF (unused) (unused) (unused)
00F0 ^ 5E 0000
00F1 ×√ CD-10 00000100
00F2 1-Var Stats 31-2D-56-61-72-20-53-74-61-74-73 11100000010001101000011000100110010110
00F3 2-Var Stats 32-2D-56-61-72-20-53-74-61-74-73 11100000010001101000011000100110010110
00F4 LinReg(a+bx) 4C-69-6E-52-65-67-28-61-2B-62-78-29 11101010101010011011000100110000011001010100
00F5 ExpReg 45-78-70-52-65-67 111010101000101001101100
00F6 LnReg 4C-6E-52-65-67 11101010101001101100
00F7 PwrReg 50-77-72-52-65-67 10000101001000101001101100
00F8 Med-Med 4D-65-64-2D-4D-65-64 1010011001100000101001100110
00F9 QuadReg 51-75-61-64-52-65-67 0110111001100110101001101100
00FA ClrList 43-6C-72-4C-69-73-74 01100101000111010110010
00FB ClrTable 43-6C-72-54-61-62-6C-65 011001010000100011011000100110
00FC Histogram 48-69-73-74-6F-67-72-61-6D 1010101100100100110010000110100010
00FD xyLine 78-79-4C-69-6E-65 1010100011101010100110
00FE Scatter 53-63-61-74-74-65-72 11000110011001001001101000
00FF LinReg(ax+b) 4C-69-6E-52-65-67-28-61-78-2B-62-29 11101010101010011011000100110101000001100100

Offline p2

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 848
  • Rating: +51/-11
  • I'm back :)
    • View Profile
Re: Vertical Text Sprites
« Reply #17 on: July 13, 2011, 10:30:44 am »
O my god!
What's this?  :o  :o  :o
*insert supercool signature*

Offline ztrumpet

  • The Rarely Active One
  • CoT Emeritus
  • LV13 Extreme Addict (Next: 9001)
  • *
  • Posts: 5712
  • Rating: +364/-4
  • If you see this, send me a PM. Just for fun.
    • View Profile
Re: Vertical Text Sprites
« Reply #18 on: July 13, 2011, 10:31:14 am »
O my god!
What's this?  :o  :o  :o
This is a ridiculous way of doing graphics in TI Basic. :P

Offline p2

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 848
  • Rating: +51/-11
  • I'm back :)
    • View Profile
Re: Vertical Text Sprites
« Reply #19 on: July 13, 2011, 10:35:35 am »
And how to use this in a program?

I have no idea how to insert something like this in a code.

And for what can I use it?
Text?
*insert supercool signature*

Offline jsj795

  • LV9 Veteran (Next: 1337)
  • *********
  • Posts: 1105
  • Rating: +84/-3
    • View Profile
Re: Vertical Text Sprites
« Reply #20 on: July 13, 2011, 10:38:30 am »
I've converted it into pdf, but idk if all came out right, since it gave me some errors while making it...
I'm guessing some fonts are not displayable or something :/


And for what can I use it?
Text?

This is used for graphics, mostly for filling up the whole screen or drawing a large sprite :)

Edit: Since this laptop's adobe thingy is in korean, it kept throwing error for non-korean adobes. So I've just attached htm file
« Last Edit: July 13, 2011, 11:19:07 am by jsj795 »


Spoiler For funny life mathematics:
1. ROMANCE MATHEMATICS
Smart man + smart woman = romance
Smart man + dumb woman = affair
Dumb man + smart woman = marriage
Dumb man + dumb woman = pregnancy
2. OFFICE ARITHMETIC
Smart boss + smart employee = profit
Smart boss + dumb employee = production
Dumb boss + smart employee = promotion
Dumb boss + dumb employee = overtime
3. SHOPPING MATH
A man will pay $2 for a $1 item he needs.
A woman will pay $1 for a $2 item that she doesn't need.
4. GENERAL EQUATIONS & STATISTICS
A woman worries about the future until she gets a husband.
A man never worries about the future until he gets a wife.
A successful man is one who makes more money than his wife can spend.
A successful woman is one who can find such a man.
5. HAPPINESS
To be happy with a man, you must understand him a lot and love him a little.
To be happy with a woman, you must love her a lot and not try to understand her at all.
6. LONGEVITY
Married men live longer than single men do, but married men are a lot more willing to die.
7. PROPENSITY TO CHANGE
A woman marries a man expecting he will change, but he doesn't.
A man marries a woman expecting that she won't change, and she does.
8. DISCUSSION TECHNIQUE
A woman has the last word in any argument.
Anything a man says after that is the beginning of a new argument.

Girls = Time * Money (Girls are a combination of time and money)
Time = Money (Time is money)
Girls = Money squared (So, girls are money squared)
Money = sqrt(Evil) (Money is also the root of all evil)
Girls = sqrt(Evil) squared (So, girls are the root of all evil squared)
Girls = Evil (Thus, girls are evil)
*Girls=Evil credit goes to Compynerd255*

Offline p2

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 848
  • Rating: +51/-11
  • I'm back :)
    • View Profile
Re: Vertical Text Sprites
« Reply #21 on: July 13, 2011, 10:45:27 am »
It tells me that i need a KOREAN FONT for watching the .pdf
There's no text shown in the .pdf  :(
*insert supercool signature*

Offline jsj795

  • LV9 Veteran (Next: 1337)
  • *********
  • Posts: 1105
  • Rating: +84/-3
    • View Profile
Re: Vertical Text Sprites
« Reply #22 on: July 13, 2011, 10:54:16 am »
damn, stupid laptop... let me see if I can fix that

Edited the above post
« Last Edit: July 13, 2011, 11:31:19 am by jsj795 »


Spoiler For funny life mathematics:
1. ROMANCE MATHEMATICS
Smart man + smart woman = romance
Smart man + dumb woman = affair
Dumb man + smart woman = marriage
Dumb man + dumb woman = pregnancy
2. OFFICE ARITHMETIC
Smart boss + smart employee = profit
Smart boss + dumb employee = production
Dumb boss + smart employee = promotion
Dumb boss + dumb employee = overtime
3. SHOPPING MATH
A man will pay $2 for a $1 item he needs.
A woman will pay $1 for a $2 item that she doesn't need.
4. GENERAL EQUATIONS & STATISTICS
A woman worries about the future until she gets a husband.
A man never worries about the future until he gets a wife.
A successful man is one who makes more money than his wife can spend.
A successful woman is one who can find such a man.
5. HAPPINESS
To be happy with a man, you must understand him a lot and love him a little.
To be happy with a woman, you must love her a lot and not try to understand her at all.
6. LONGEVITY
Married men live longer than single men do, but married men are a lot more willing to die.
7. PROPENSITY TO CHANGE
A woman marries a man expecting he will change, but he doesn't.
A man marries a woman expecting that she won't change, and she does.
8. DISCUSSION TECHNIQUE
A woman has the last word in any argument.
Anything a man says after that is the beginning of a new argument.

Girls = Time * Money (Girls are a combination of time and money)
Time = Money (Time is money)
Girls = Money squared (So, girls are money squared)
Money = sqrt(Evil) (Money is also the root of all evil)
Girls = sqrt(Evil) squared (So, girls are the root of all evil squared)
Girls = Evil (Thus, girls are evil)
*Girls=Evil credit goes to Compynerd255*

Offline Deep Toaster

  • So much to do, so much time, so little motivation
  • Administrator
  • LV13 Extreme Addict (Next: 9001)
  • *************
  • Posts: 8217
  • Rating: +758/-15
    • View Profile
    • ClrHome
Re: Vertical Text Sprites
« Reply #23 on: July 13, 2011, 02:23:03 pm »
Update:
If appears that weregoose's site is down right now, so I'm putting a copy of his table in the post so it doesn't get lost to time.

weregoose.unitedti.org has been removed entirely :(




Offline ztrumpet

  • The Rarely Active One
  • CoT Emeritus
  • LV13 Extreme Addict (Next: 9001)
  • *
  • Posts: 5712
  • Rating: +364/-4
  • If you see this, send me a PM. Just for fun.
    • View Profile
Re: Vertical Text Sprites
« Reply #24 on: September 22, 2011, 07:02:47 pm »
Tifreak uploaded this tutorial to TiFreakware, and it includes the best version of the table to date:
http://tifreakware.net/tutorials/83p/b/misc/ztrumpetsverticaltextsprite.htm#list

Offline Deep Toaster

  • So much to do, so much time, so little motivation
  • Administrator
  • LV13 Extreme Addict (Next: 9001)
  • *************
  • Posts: 8217
  • Rating: +758/-15
    • View Profile
    • ClrHome
Re: Vertical Text Sprites
« Reply #25 on: September 22, 2011, 07:13:10 pm »
That be a huge table O.O




Offline Xeda112358

  • they/them
  • Moderator
  • LV12 Extreme Poster (Next: 5000)
  • ************
  • Posts: 4673
  • Rating: +718/-6
  • Calc-u-lator, do doo doo do do do.
    • View Profile
Re: Vertical Text Sprites
« Reply #26 on: April 01, 2012, 03:40:22 pm »
I have a question... can one use this method to draw sprites in the top 6 pixels, or do you need horizontal sprites for that?

EDIT:
And yes, I know I necroposted :P

Offline Deep Toaster

  • So much to do, so much time, so little motivation
  • Administrator
  • LV13 Extreme Addict (Next: 9001)
  • *************
  • Posts: 8217
  • Rating: +758/-15
    • View Profile
    • ClrHome
Re: Vertical Text Sprites
« Reply #27 on: April 01, 2012, 05:12:05 pm »
The reason you can't do top six is because there's always a clear top row for graphscreen text (with the exception of accented chars). On the other hand, it should work with Text(-1 ... wonder if anyone's tried that yet.




Offline Xeda112358

  • they/them
  • Moderator
  • LV12 Extreme Poster (Next: 5000)
  • ************
  • Posts: 4673
  • Rating: +718/-6
  • Calc-u-lator, do doo doo do do do.
    • View Profile
Re: Vertical Text Sprites
« Reply #28 on: April 01, 2012, 05:26:19 pm »
Hmm, but that doesn't allow the user to go offscreen, right?

Offline ztrumpet

  • The Rarely Active One
  • CoT Emeritus
  • LV13 Extreme Addict (Next: 9001)
  • *
  • Posts: 5712
  • Rating: +364/-4
  • If you see this, send me a PM. Just for fun.
    • View Profile
Re: Vertical Text Sprites
« Reply #29 on: April 01, 2012, 05:26:23 pm »
The reason you can't do top six is because there's always a clear top row for graphscreen text (with the exception of accented chars). On the other hand, it should work with Text(-1 ... wonder if anyone's tried that yet.
It wouldn't because there's always a row of white pixels at the bottom of those sprites.  However, you could probably make it work top down: