## Abstract

Equations (12) and (13) in a previous Letter [Opt. Lett. **37**, 2778 (2012)] were incorrect due to a mistake in writing and are modified here.

© 2014 Optical Society of America

The authors of [1] would like to point out that they made a mistake in writing Eqs. (12) and (13) on page 2779 in [1]; however, the implementation of the proposed algorithm in [1] is correct. Equations (12) and (13) should have read as follows:

(12)$${h}_{t}^{(n+1)}(\mathbf{x})={h}^{(n)}(\mathbf{x})\{{o}^{(n)}(-\mathbf{x})*\left[\frac{i(\mathbf{x})}{{h}^{(n)}(\mathbf{x})*{o}^{(n)}(\mathbf{x})}\right]\},\phantom{\rule{0ex}{0ex}}{h}^{(n+1)}(\mathbf{x})=\frac{{h}_{t}^{(n+1)}(\mathbf{x})}{\sum _{\mathbf{x}}{h}_{t}^{(n+1)}(\mathbf{x})},$$
(13)$${o}^{(n+1)}(\mathbf{x})={o}^{(n)}(\mathbf{x})\{{h}^{(n+1)}(-\mathbf{x})*\left[\frac{i(\mathbf{x})}{{h}^{(n+1)}(\mathbf{x})*{o}^{(n)}(\mathbf{x})}\right]\}\phantom{\rule{0ex}{0ex}}\times \frac{1}{1-\frac{\lambda}{1+\beta D(\mathbf{x})}\text{\hspace{0.17em}}\mathrm{div}\left(\frac{\nabla {o}^{(n)}(\mathbf{x})}{|\nabla {o}^{(n)}(\mathbf{x})|}\right)}.$$
## Reference

**1. **L. Yan, H. Fang, and S. Zhong, Opt. Lett. **37**, 2778 (2012).

### Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.

### Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(12)
$${h}_{t}^{(n+1)}(\mathbf{x})={h}^{(n)}(\mathbf{x})\{{o}^{(n)}(-\mathbf{x})*\left[\frac{i(\mathbf{x})}{{h}^{(n)}(\mathbf{x})*{o}^{(n)}(\mathbf{x})}\right]\},\phantom{\rule{0ex}{0ex}}{h}^{(n+1)}(\mathbf{x})=\frac{{h}_{t}^{(n+1)}(\mathbf{x})}{\sum _{\mathbf{x}}{h}_{t}^{(n+1)}(\mathbf{x})},$$
(13)
$${o}^{(n+1)}(\mathbf{x})={o}^{(n)}(\mathbf{x})\{{h}^{(n+1)}(-\mathbf{x})*\left[\frac{i(\mathbf{x})}{{h}^{(n+1)}(\mathbf{x})*{o}^{(n)}(\mathbf{x})}\right]\}\phantom{\rule{0ex}{0ex}}\times \frac{1}{1-\frac{\lambda}{1+\beta D(\mathbf{x})}\text{\hspace{0.17em}}\mathrm{div}\left(\frac{\nabla {o}^{(n)}(\mathbf{x})}{|\nabla {o}^{(n)}(\mathbf{x})|}\right)}.$$